既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
二、数据描述
描述数据的方法,包括描述数据中心趋势的方法如均值、中位数,描述数据的分散程度的方法如方差、标准差,以及数据的其他描述方法如散点图和参数化方法等。
1.描述数据中心趋势
1.1平均值和截断均值
平均值(Mean),又称为均值或算数均值(Arithmeticmean),其计算方式如下:
例如.对于下列学生成绩列表,其算数均值为73.5分,即平均分是73.5分。可以看出,学生的成绩分布大体在平均值附近。
76,89,76,70,70,84,90,84,83,83截断均值(Trimmed mean),即不考虑离群值,用其他值计算平均值。
如果其中一个同学因某种原因导致成绩太低,为了处理这种情况,可以使用截断均值。使用截断均值来进行计算,如:去除第一个同学的分数,余下9个同学算出分数平均值这比较符合直观印象。在许多比赛环节中,为了避免评委个人的偏好与偏向对整体评分造成影响,通常使用去掉个最低分,去掉一个最高分,用其他分数计算平均分的手段来进行打分,这就是一种形式的截断均值。
1.2加权平均值
加权算术均值( Weighted arithmetic mean):不希望将所有的数据等同看待,而是希望让一些数据比另一些数据更有代表性,其计算方式如下:
如:比赛打分
评委:80,80,80,80,80
观众:30,40,50,60,50,40,30,20,10,40
希望评委的权重是观众的10倍
评委分数之和*10+观众分数之和/评委人数*10+观众人数
1.3中位数(Median)和众数(Mode)
众数、中位数和均值如图所示,对于仅有一个峰值的分布来说,三者之间的关系可以用一个经验公式来描述:
Mean一Mode= 3*(Mean一Median)
该公式并不一定总是成立,但是可以在一定程度上反映三者之间的关系。
2.描述数据的分散程度
希望数据之间相差很大,还是相差较小,这就是数据的分散程度。
衡量数据的分散程度的一个很好的指标是分位数,a分位数是从负无穷到某一点概率密度函数的积分(分布列求和)为a时那一点的值。比较常用的分位数为最小值(可以认为是0分位数)、0.25分位数(Q1)、中位数(0.5分位数,Q2)、0.75分位数(Q3)和最大值(可以认为是1分位数)。
2.1箱线图
通过这些分位数可以定义一些描述数据分散度的指标。范围是最大值与最小值之差,它描述了数据分布在多大的范围中;中间四分位数极差(IQR)是Q3-Q1,它反映了数据中心部分的分散程度;五数概要是上述5个分位数的整体,通常被用在箱线图中,用于形象表示数据的范围。
在箱线图中,有些数据点由于过于脱离整体,通常希望把它们单独表示出来,这些点称为离群点
(Outlier)。通常使用点与最近的中间四分位数的差来判断是否属于离群点,通常使用一一个常数k(经验值为1.5)与中间四分位数极差的成绩来定义这个临界差值。即当数据不属于以下区间时,认为数据为离群点:
[Q1 - k(Q3 - Q1),Q3 +k(Q3 - Q1)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
了95%以上大数据知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新