大数据最新机器学习算法(3)—— 逻辑回归算法,2024年最新大数据开发黑科技保活实现原理揭秘

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

逻辑回归算法

1 逻辑回归介绍

应用场景:

  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 金融诈骗
  • 虚假账号

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,用于解决二分类问题。名字中带有回归,它与回归之间有一定的联系。

逻辑回归的输入就是线性回归的输出
在这里插入图片描述
sigmoid函数又称激活函数,其定义如下:
在这里插入图片描述

回归的结果输入到sigmoid函数当中
在这里插入图片描述
输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值。
在这里插入图片描述

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

2 损失及优化

逻辑回归的损失,称之为对数似然损失,公式如下:
在这里插入图片描述

其中y为真实值,hθ(x)为预测值

无论何时,我们都希望损失函数值,越小越好

分情况讨论,结合对数函数图像,对应的损失函数值:

  • 当y=1时,我们希望hθ(x)值越大越好;
  • 当y=0时,我们希望hθ(x)值越小越好

综合完整损失函数:
在这里插入图片描述
接下来我们呢就带入上面那个例子来计算一遍,就能理解意义了
在这里插入图片描述

我们已经知道,对于-log(P), P值越大,结果越小,所以我们可以对着这个损失的式子去分析

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率

3 逻辑回归的使用

sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)

  • solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,‘newton-cg’, ‘lbfgs’},

    • 默认: ‘liblinear’;用于优化问题的算法。
    • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
    • 对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
  • penalty:正则化的种类

  • C:正则化力度

注意:

  • 默认将类别数量少的当做正例
  • LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/

数据描述

  • 699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤相关的医学特征,最后一列表示肿瘤类型的数值。
  • 包含16个缺失值,用”?”标出。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report


'''1.获取数据'''
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
         'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
         'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv(
    "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
    names=names)    
# print(data.head())

'''2.基本数据处理'''
# 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna() # 删除包含缺失值的行
# 确定特征值,目标值
x = data.iloc[:, 1:10] # 第2列到第10列
y = data["Class"]
# 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

'''3.特征工程(标准化)'''
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

'''4.机器学习(逻辑回归)'''
estimator = LogisticRegression()
estimator.fit(x_train, y_train)

'''5.模型评估'''
# 预测值
y_predict = estimator.predict(x_test)
print(y_predict)
# 准确率
score = estimator.score(x_test, y_test)
print(score)

注意:
对于列名, pd.read_csv()的参数names;pd.Dataframe()的参数columns,我总是把二者弄混

在这里插入图片描述

在很多分类场景当中我们不一定只关注预测的准确率(准确率并不是衡量分类正确的唯一标准)

比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来

4 分类评估方法

4.1 混淆矩阵

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
在这里插入图片描述

  • 准确率

    • 预测正确的数占样本总数的比例
    • (TP+TN) / (TP+FP+FN+TN)
  • 精确率

    • 预测结果为正例样本中真实为正例的比例
    • TP/(TP+FP)
      在这里插入图片描述
  • 召回率

    • 真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)
    • TP/(TP+FN)
      在这里插入图片描述
  • F1-score:反映了模型的稳健型
    在这里插入图片描述

分类评估报告api

sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels:指定类别对应的数字
  • target_names:目标类别名称
  • return:每个类别精确率与召回率
# ret = classification\_report(y\_test, y\_predict)
ret = classification_report(y_test, y_predict, labels=(2,4), target_names=("良性", "恶性")) # 索引2、4改成良性、恶性
print(ret)

在这里插入图片描述
假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题

  • 一般认为数据比例4比1则为不均衡

问题:如何衡量样本不均衡下的评估?
解答:AUC指标主要用于评估样本不均衡二分类问题

4.2 ROC曲线与AUC指标

  • TPR = TP / (TP + FN)
    • 召回率
    • 所有真实类别为1的样本中,预测类别为1的比例
  • FPR = FP / (FP + TN)
    • 所有真实类别为0的样本中,预测类别为1的比例

(1)ROC曲线

ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5

在这里插入图片描述
(2)AUC指标

AUC(Area Under Curve)被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。

  • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本得分的概率
  • AUC的范围在 [0, 1] 之间,并且越接近1越好,越接近0.5属于乱猜
  • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

AUC计算API

from sklearn.metrics import roc_auc_score
sklearn.metrics.roc_auc_score(y_true, y_predict)

  • 计算ROC曲线面积,即AUC值
  • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
  • y_predict:预测得分,可以是正类的估计概率、置信值或者分类器方法的返回值
# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0) # 2是良性4是恶性,将目标值大于2.5的改为1,小于2.5的改为0
print("AUC指标:", roc_auc_score(y_test, y_predict) # 传入真实值、预测值

注意:

  • AUC只能用来评价二分类
  • AUC非常适合评价样本不平衡中的分类器性能

4.3 ROC曲线绘制

关于ROC曲线的绘制过程,通过以下举例进行说明

假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后面的表示点击(1)或没有点击(0)。
然后在这6次展示的时候都通过model算出了点击的概率序列。

下面看三种情况。

(1)如果概率的序列是(1:0.9,2:0.7,3:0.8,4:0.6,5:0.5,6:0.4)
在这里插入图片描述
在这里插入图片描述

TPR = TP/(TP+FN)
FPR = FP/(TN+FP)

绘制的步骤是:

  1. 把概率序列从高到低排序,得到顺序(1:0.9,3:0.8,2:0.7,4:0.6,5:0.5,6:0.4);
  2. 从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
  3. 从概率最大开始,再取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.0;
  4. 再从最大开始取一个点作为正类,取到点2,计算得到TPR=1.0,FPR=0.25;
  5. 以此类推,得到6对TPR和FPR。

然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

和FPR。

然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。

[外链图片转存中…(img-nhn9UYwz-1715778456778)]
[外链图片转存中…(img-KCIrXRCA-1715778456778)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值