AI产品经理更多的是利用AI新技术研发产品,在了解行业最新动态、成功案例和国际先进经验的基础上,积极参与政策咨询、项目申报、试点示范等工作,推动AI产品的落地应用。同时通过参加行业展会、研讨会等,进行案例包装与宣传,提供持续的技术支持和知识分享,推动AI技术在政府领域的广泛应用,助力数字政府和智慧城市建设。
本书是一本指导AI产品真正实现商业化落地的专业技术书。书中内容围绕产品落地、商业化展开,既提供了不同类型AI产品的落地方案,又提供了具体的方法、技巧,还提供了安防、制造、汽车等多个典型行业的应用案例。 本书共包括4篇13章的内容。第一篇(第1~2章)对AI产品及AI产品经理进行全方位深入解读,目的是让读者真正理解AI产品经理这个职位,这是做好这份工作的基础。另外,本篇还重点介绍了如何成为AI产品经理和如何规划AI产品经理职业发展路径。第二篇(第3~6章)从机器学习入手,逐渐拓展到以计算机视觉、语音识别、语义理解为核心的多模态内容理解技术、行为主义的机器人学,以及AI云原生工程应用。本篇以AI产品经理实际需求为前提,用产品经理可以理解的方式展开介绍,不讲与产品经理工作关联性不强的技术细节,只讲技术原理和应用方向,这些都是AI产品经理落地产品时必须掌握的。 第三篇(第7~11章)是本书的重点。本篇首先介绍了通用的产品方法论,然后结合AI产业链的特点,深入解读了算法、中台、业务三大类AI产品的落地实践。其中,关于算法和中台类产品的介绍,可帮助读者应对自动驾驶、元宇宙、企业智能、智能汽车、虚拟数字人等主流产品的落地需求;针对业务类AI产品,从城市治理、企业服务、个人服务三个维度展开介绍。 第四篇(第12~13章)从赋能行业和项目实践两个维度解读AI产品高效、高质量落地的方法。其中不仅以安防、制造业、汽车为案例解读了AI产品高效落地的方法和方案,还以B/G端项目、商机项目为例,提供了可行性验证、交付等问题的解决思路。
第三篇 AI产品应用
本篇将从应用的角度介绍AI产品。首先说明AI产品经理如何发现AI产品机会,随后介绍如何定义和搭建一款AI产品,最后介绍算法应用类AI产品、平台中台类AI产品及纵深到业务赛道的AI产品的落地要点和方法。
(27)笔者认为AI产业的发展会形成两个方向:一个方向是以基础能力为核心的横向发展,如AI技术的产品化、标准化、通用化;一个方向是为传统行业赋能的纵向发展。笔者定义横向发展为AI行业化,纵向发展为AI赋能百业。
(28)首先是明确自身的市场定位,许多企业寻求差异化市场以及细分市场,从而避开了与行业头部企业正面竞争,最终占领了整个细分市场。找到竞争对手之后再对标竞争产品或者服务。AI产品的竞品分析可以从产品形态、商业模式、功能、性能、精度、价格、用户、场景等多个方面入手。
(29)产品的创新一般包括商业模式创新和技术创新,商业模式创新的门槛低,容易模仿,而技术创新需要大量的技术研发积累,互联网时代的产品商业模式创新改变了旧商品经济时代的商业模式,商业模式解决的更多是资源配置效率问题。技术创新解决的却是资源生产问题,特别是在硬核科技领域,会对产品提出更多的技术创新要求。技术的创新存在着长周期的传导效应。从创新的变量大小角度看,技术创新可以分为突破式创新和渐进式创新。
(30)AI产品经理需要搭建技术和场景条件的桥梁,即充分理解场景需求并提供充分的场景条件限制,以寻求场景和技术的可行结合方案。
(31)产品经理的核心工作之一就是收集用户反馈、理解用户需求、把握市场需求并将其转换为产品需求。做产品应该从用户需求出发,而不是转发用户需求,产品经理是连接需求和产品的桥梁,AI产品经理需要将AI的能力边界、应用案例通俗化以让用户理解,更需要深入理解用户业务流程中的问题和痛点,然后提供用户认可的解决方案。
(32)定义一款产品,核心是讲清楚产品是什么。这需要从产品目标、定义、形态目标客群/用户群、应用场景、产品价值、商业模式、产品路线等多种要素出发全面考虑。
(33)定软件产品的设计应关注功能设计、结构与流程设计、交互与用户体验三个维度,产品经理可将一系列散乱的功能组合成一个产品,这可以从点、线、面三个维度进行,其中功能设计关注单点功能,结构与流程设计关注线与面层面的功能,交互与用户体验关注点线面整体融合,即最终呈现的产品。
(34)系统架构图是对整个系统****基于某种视角进行构建,形成的模块化、层次化、一体化的结构图。构建时包含逻辑实体和层次化关系。这里所说的视角包括物理视角、功能逻辑视角、技术组件视角等。
(35)在产品设计的交互与用户体验维度上,可以从五个要素自顶向下进行用户体验设计的规划,这五个要素分别是战略层、范围层、结构层、框架层、表现层。
(36)在原型的表达上,笔者认为**产品经理应专注于客户需求沟通、竞争分析,以及对行业业务和功能逻辑进行梳理。**对内的需求表达,应从框架、功能模块和核心意图角度展开,比如在人手不足时可仅使用线框图朴素地表达产品原型,这类原型可把产品解决问题的能力和用户价值作为重点,不过度在弱用户价值的交互和展示细节上投入。对于人手充足的团队可将原型详细化、美观化,从而提高后期的工作效率。
(37)对于AI产品来说,PCBA中的AI计算芯片是核心模块,做AI计算的芯片方案很多,无论是中心计算还是边缘计算,如具有神经网络加速能力的SOC、CPU+GPU/NPU/FPGA的异构方案等,算力、功耗、工具链和开发成本是产品经理在这方面需要重点考虑的问题。
(38)对需求的管理会涉及人、流程、管理方法和准则,一般包括需求收集、管理、评审、排期、验收等过程。对于产品经理来说,最真实的需求还是来源于市场和用户,而不是靠自己闭门造车。需求管理需要关注紧急性、可行性、重要性和优先级四个维度。将需求池中的需求输出要经过需求评审,之后将其转换为产品开发需求。需求评审是需求转换的关键环节。
(39)一般需求排期需要由产品经理先提出里程碑和版本节点,项目经理与开发经理再进行具体制定工作,然后交由所有干系方共同论讨决定。在这个过程中,产品经理主要考虑可以通过组合哪些需求以在最短的时间内输出最小可行、可独立可售卖的产品版本,以满足客户及项目的需要。需求排期要综合考虑目标、时间量、资源。
(40)在基于深度学习的技术框架下,一个深度学习算法模型的生产一般需要经过以下几个基础环节:任务定义、数据工程、模型训练、模型加速和适配、模型评价。
(41)AI产品经理要想理解算法功能边界、任务定义和类别定义,就需要看大量的数据,并与算法研究员进行深入沟通,明确各种类别数据的分布情况,并整理完备的任务定义、类别定义样本示例图。按照不同模态,数据的标注包括对图像、语音、文本的标注。图像的标注包括拉框、标签分类、关键点标注、语义分割、3D点云等,语音的标注包括对说话内容、说话人等的标注,文本的标注则包括对文本分类、情感等任务的标注。
(42)模型的本质是一些二进制的结构和参数,但在不同的开源训练框架上训练出来的模型有不同的格式。不同的推理产品硬件厂商针对自己的硬件提供了丰富的推理优化工具链,比如NVIDIA(英伟达)的TensorRT、Intel的OpenVINO等。要解决深度神经网络模型参数量大、计算量大、速度慢等问题,一方面要提升算力,另一方面要量化模型。量化是指将信号的连续取值近似为有限多个离散值的过程,可理解成一种信息压缩的方法。而模型量化,主要是对模型中的参数进行量化。
(43)评价一个AI产品的好坏,很多时候是评价核心算法的好坏。合理全面评估算法、输出产品的能力边界及参数指标、服务产品的商业化能力是AI产品经理的重要工作。
(44)系统对实时性响应的要求一般存在三种级别:第一种是人不可感知的实时性响应,一般是毫秒级甚至纳秒级响应;第二种是人可感知的短实时性响应;第三种是人大延迟响应。
(45)AI中台是“智能”的基础设施,是实现AI技术和应用快速研发、共享复用和高效管理的智能基础设施。AI中台提供了从构建算法到运行算法的能力。从算法生产流程看,AI中台包含了训练和运行两大部分:训练通过构建算法任务,得到一个可运行的算法;运行(或推理)是将算法部署上线,并自动化完成对应的任务。从过程上看,训练是生产,运行是使用。
(46)AI应用导向的数据管理包含对样本的管理和对标注的管理。这里所说的样本包含图片、音频、表格等多种形式。可以按照模态、算法、业务、用途等可将样本进一步细分为多种类型。
(47)AI中台看似是非常庞大的应用体系,实际上在小规模的业务应用中也可以精简使用,形成以业务闭环为导向的系统,特别是针对长尾、不断新增的需求,“推理-错误反馈-训练-更新”的闭环应用机制是很好的解决方案。
以沃尔玛的智能称重系统为例,该解决方案通过智能摄像机识别商品,并在屏幕上提供识别结果,用户确认后快速打印商品标签,完成使用闭环。
(48)G端场景的特点是数据和应用更倾向于私有化、项目规模化、工程系统化。项目中的定制化需求多,需求碎片化现象严重。1、从做AI产品的角度来看,更多的时候是用AI算法应对碎片化的需求,在硬件相同的情况下,通过适当更改软件,以实现不同算法能力,是应对碎片化市场的一条新路子。2、在AI算法类的软件产品中,面对碎片化的应用,解决的办法之一是平台和生态开放。3、用户侧闭环响应是出让产品生产能力给用户,提升用户侧定制化响应能力,从而满足用户众多的定制化需求。4、面对新需求,开放集方法可以通过小样本“注册入库”的方式来响应。
(49)著名的AI领域专家、斯坦福人工智能实验室主任吴恩达在2018年发布了《人工智能转型手册——如何带领您的企业进入人工智能时代》,对企业的AI转型提出了如下5个建议:1、 通****过执行试点项目来蓄势:即通过在企业内部找到技术可行、可应用落地、目标可明确量化、6~12个月可以出效果的解决方案。从简单、可行、有价值的项目入手,做出标杆效果。2、组建内部AI团队:组建一个集中式的AI团队,为其他团队提供支撑。许多企业设立的AI中心/研究院就是这样的团队。3、提供AI培训:为从高管到员工不同类型的人员提供有针对性的AI内容培训。4、 制定AI战略:企业需要基于AI资产(如数据)构建“AI+纵深行业”的竞争优势,设计符合良性正反馈循环的AI策略。5、 打通内外部沟通:AI加持的业务,会涉及获得和使用数据的合规性、业务问题的处理方式等方面,这些需要投资者、政府、客户、用户、内部员工、外聘人才等彼此沟通解决,这就要求必须有一套顺畅的沟通机制。
(50)对AI产品来说,**功能、精度、速度等是最基础的产品特性,**也是决定产品价值的特性。功能代表能否实现某项任务,精度代表实现的程度,速度是算力的反映,决定了应用的效率。在算法应用中功能、精度、速度往往是产品竞争力的组成部分。
(51)面向个人的AI产品的目标是超越现有产品的体验感,业务模式更倾向于“交互产品+运营”,产品更多是一种交互载体,而内容和生态是运营的重点,交互方式和智能程度的提升是直接影响体验的两个方面。
第四篇 AI技术
本篇从赋能行业、项目实践两个维度介绍AI产品在场景化下的应用,以及在这些场景中打造产品和交付项目的实战经验。
(52)针对大规模的场景,如城市级别的安防人脸识别应用,需要端边云联合的整体解决方案。其中在端侧,主要是智能摄像机,即包含智能算法的摄像机,可提供人脸抓拍、人脸属性识别等一系列智能识别功能;在边侧,如针对视频流相机,可提供边缘的算力节点,由其负责对汇集的视频进行智能化处理;在云(中心)侧,强大的算力更适合大规模的人脸比对和检索,云侧管理规模化的人脸库,提供强大的检索算力,集中提供规模化的人脸识别应用。
(53)如何验证AI技术在项目中的可行性呢?概念验证(Proof of Concept, POC),就是为解决可行性问题而存在的环节,POC关注的维度有很多。
小结
本书重点说明了总结了从AI产品经理的角色职能等以及相关知识体系以及AI云原生应用等,这些内容为AI产品经理在产品落地过程中必须掌握的关键知识提供了支持。
笔者从事的TO G 业务多是服务政府领导机构,做产品很多时候并不需要遵循严格的产品流程。但产品思维是必须是要有的,如何理解用户需求解决实际问题提供价值是我们的首要目的。笔者认为,产品经理应专注于客户需求沟通、竞争分析,以及对行业业务和功能逻辑进行梳理,对内的需求表达应从框架、功能模块和核心意图角度展开。
作为政务行业产品经理,一个是深入了解政府部门相关的公共管理、政策执行、数据治理等方面的政策导向、发展规划、法律法规等,确保产品与政府机构的整体发展方向一致;其次产品经理需要通过产品设计提供解决方案,帮助政府单位分析其行政内容,提高政府治理的效率和精准度。比如现在政府做数字化转型,很多公司做的系统就没有实际用起来,就是因为不懂业务,不会化简政务,导致项目屡屡暴雷。最后因地制宜,很多方案未考虑到政府服务的地域差异,此前笔者曾见过有的A地的设计方案内容还是B地的,产品规划是需要结合本地产业链资源共同构建完整的解决方案,提供一站式服务。
AI技术的出现,对于产品经理而言不光是提质增效,通过智能化分析和自动化处理还可以优化服务流程、增强数据要素的业务共享,进而精准预测民众需求提升政府透明度和公众的生活价值。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓