自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2381)
  • 收藏
  • 关注

原创 大模型学习全攻略:七阶段系统学习路线图,从基础到实战应用,非常详细收藏我这一篇就够了

文章提供了七阶段大模型学习路线图:从数学和编程基础开始,经历机器学习、深度学习、自然语言处理等阶段,到大规模语言模型及其应用,最后是持续学习与进阶。每个阶段都推荐了相关书籍、论文和在线课程作为学习资源,并附有包含学习路线图、视频教程、技术文档和面试题的大模型学习资源包,帮助学习者系统掌握大模型相关知识。

2025-12-16 14:34:34 1486

原创 全新发布!大模型LLM学习路线图:全面掌握学习路径,非常详细收藏我这一篇就够了

ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料,让不少人惊呼:“未来是属于AI的”。AI大模型——成为互联网从业者必备技能。

2024-08-11 19:00:00 2930 2

原创 2026大模型学习路线图:从零基础到精通,收藏这份超全指南,小白也能快速上手!

文章系统介绍了大模型学习的完整路径,从数学基础、编程基础和深度学习基础开始,逐步深入Transformer模型、预训练技术和自然语言处理核心知识,通过实战项目巩固技能,最终掌握API应用开发、模型微调与私有化部署等高级技术,为学习者提供从入门到精通的系统化学习方案,助力AI领域职业发展。

2026-01-30 20:16:01 593

原创 大模型落地实践:智能体平台三大支柱(RAG+Workflow+Agent)全解析(建议收藏)

企业级智能体平台基于RAG、Workflow与Agent三大技术支柱,实现从对话智能到流程智能的演进。RAG提供准确知识支撑,Workflow确保流程可控性,Agent实现动态决策。该平台通过标准化AI能力、规范化业务流程、明确系统边界,构建可预测的智能系统。文章详细分析了各组件技术实现、面临的挑战及解决方案,并阐述了三者协同构建可靠企业级AI系统的方法,强调平台化在规模化应用中的关键价值。

2026-01-30 20:14:11 512

原创 颠覆RLHF!LLMdoctor让7B小模型轻松驾驭70B大模型,实现高效对齐

LLMdoctor提出创新的"小教大"对齐范式,通过训练7B小模型指导70B大模型生成方向,无需微调大模型参数。其核心创新在于: 采用"病人-医生"交互框架,小模型实时提供token级细粒度指导 引入基于GFlowNet的TFPO技术,通过流平衡原理实现精确的概率流调控 自监督获取token级奖励信号,解决传统RLHF信号粗糙问题 实验表明,该方法不仅超越现有测试时对齐方案,部分指标甚至优于全量微调的DPO,实现"弱指导强"的突破。相比传统方法,L

2026-01-30 20:11:09 250

原创 大模型技术核心概念解析:Agent、MCP、A2A与Agent Skills的区别与应用

摘要 本文系统解析了大模型技术中的四大核心概念:Agent(智能体)作为自主决策的计算实体,包含感知、规划、执行等组件;MCP(模型上下文协议)实现LLM与外部工具的无缝集成;A2A(智能体间协议)促进不同AI间的协作;Agent Skills(代理技能)作为模块化工作手册提升任务专业性。文章还梳理了智能体的发展历程,从反射型到基于LLM的智能体,并对比了各概念的区别与联系。最后指出大模型技术带来的职业机遇,强调系统学习的重要性。

2026-01-30 20:10:10 420

原创 大模型AI产品经理学习路线解析,完美!【2026最全面】人工智能学习路线:适合新手与大学生的完整指南!

本文为人工智能初学者提供了一份系统学习路线。入门阶段建议先掌握Python编程基础,包括运行环境搭建、语法基础、函数、面向对象编程和科学计算等内容。同时需要学习数学基础知识,为后续机器学习算法打下理论基础。通过分阶段学习,帮助初学者克服畏难情绪,循序渐进地掌握AI核心技能。

2026-01-29 14:51:07 562

原创 2026算法岗位前瞻:大模型VS搜推广,哪个方向更值得投入?

本文对比分析了2024年算法岗位的两大热门方向:大模型和搜推广。大模型领域分为高门槛的基座模型、需求旺盛的后训练/业务结合层和机会广泛的应用开发层;搜推广则强调工程落地和业务适配,被称为"算法岗中的开发岗"。文章指出,随着各行业积极拥抱大模型技术,具备相关项目经验的求职者更具竞争力。作者建议,无论选择哪个方向,扎实的基础知识和工程能力都是关键,同时应关注大模型技术发展,以应对行业变革。文中还解释了为何今年未讨论其他算法岗位,指出许多领域都在向大模型技术靠拢的趋势。

2026-01-29 14:49:44 428

原创 O-Researcher框架揭秘:多智能体强化学习让开源大模型实现SOTA性能

OPPO AI Agent团队提出O-Researcher框架,通过多智能体驱动的端到端深度研究数据合成和两阶段训练策略(SFT+RLAIF),使开源模型无需专有数据或模型即可在深度研究基准上实现SOTA性能。实验表明,该方法在DeepResearch Bench上得分48.48,大幅提升多轮准确率(33.38%→48.48%)和有效引用数(8.96→26.01),为开源大模型发展提供了可扩展的有效路径。

2026-01-29 14:44:32 332

原创 DeepSeek-OCR V2的视觉因果流技术解析 | 大模型学习指南 | 必收藏

DeepSeek-OCR V2创新性地用小型LLM替换传统CLIP组件,实现了从物理压缩到逻辑感知的转变。新架构引入"视觉因果流"概念,使模型能按语义逻辑而非固定空间顺序处理图像信息。这一改进显著提高了Token效率、读序准确性,解决了"复读机"问题,为LLM理解视觉世界开辟了新路径,暗示了未来统一全模态编码器的可能性。

2026-01-29 14:43:27 475

原创 收藏必备!让ChatGPT变身行业专家的模型微调全攻略

模型微调是让通用大模型适应特定行业的关键技术,通过少量高质量行业数据继续训练模型,使其从"样样通"变成"术业有专攻"。文章详解了微调的四大步骤:数据准备、方法选择、模型训练和效果验证,并介绍了适用场景和避坑指南,帮助开发者打造专属行业专家模型。

2026-01-29 14:41:53 530

原创 MiSS微调方法:被ICLR 2026顶级会议收录,性能全面超越LoRA的大模型优化新方案

MiSS是一种新型微调方法,采用"分片共享"结构,将预训练权重矩阵分解为多个片段,并仅使用一个共享的可训练矩阵替代LoRA的双矩阵优化方式。这种方法解决了LoRA收敛速度慢和参数利用率低的问题,实验表明MiSS在自然语言任务上性能优于LoRA、DoRA等主流变体,能够更快收敛,在更少参数下达到最佳性能与效率平衡。

2026-01-29 14:40:27 399

原创 30+程序员如何抓住大模型浪潮:一位“过来人“的转型经验与学习指南,2026年一定要试试大模型!

文章是一位35岁程序员分享从传统开发转向大模型领域的经历。作者分析了35岁程序员面临的职业瓶颈,并指出大模型是技术范式转移的重要机遇。他详细分享了转型准备过程、需要学习的新知识体系,以及给同龄人的建议:不要all-in,先以副业形式探索;发挥工程经验优势;与现有技能结合;拥抱社区;保持耐心。文章强调大模型落地应用将爆发式增长,30+程序员可通过掌握大模型技术实现"换道超车"。

2026-01-27 14:16:22 984

原创 2026年AI大模型人才需求爆发,8大核心岗位能力要求全解析

AI大模型产业迎来爆发增长,2024年成为应用元年,人才需求激增。工信部发布《大模型技术与应用产业人才岗位能力要求》,明确架构、算法、数据、评测、应用五大岗位方向及专业知识、技术技能、工程实践三大能力要素。建议青年人才结合自身优势选择方向,关注行业应用趋势,通过实习积累项目经验,把握AI大模型发展机遇。同时提供104G学习资源包,涵盖从入门到进阶的全套教程,助力转型大模型领域。

2026-01-27 14:14:50 458

原创 EVOL-SAM3:不训练也能进化,7B模型逆袭72B大模型!

厦门大学团队提出创新性零样本框架EVOL-SAM3,通过模拟生物进化过程重构推理机制。该框架采用"生成-评估-进化"闭环,在不更新模型参数的情况下,仅用7B参数的模型就在ReasonSeg基准测试中取得70.7 gIoU,超越全量微调的13B模型(65.0 gIoU)和72B参数的基线模型。实验表明,优化推理过程比单纯增加参数量更有效,7B模型在长难句任务中达到74.3 gIoU,展现出推理时计算的巨大潜力。这一突破为降低大模型使用成本提供了新思路。

2026-01-27 14:13:06 569

原创 大模型时代职业全景图谱:四大方向岗位详解与转型指南

大模型时代职业全景图谱:四大类岗位详解 本文将大模型领域岗位划分为基础设施与工程类、模型研发与算法类、数据类、产品与应用类四大类别。每类列举典型岗位及其核心职责,如基础设施工程师负责分布式计算架构,算法研究员专注模型创新,数据工程师处理PB级语料,产品经理定义AI产品形态。文章指出岗位间存在交叉融合趋势,强调除技术能力外,沟通协作、产品思维和伦理意识同样重要,为从业者提供了一份全面的大模型时代职业发展指南。

2026-01-27 14:10:36 508

原创 掌握AI Skill:构建可复用、标准化的大模型专业能力

Skill是AI领域的新抽象层,旨在解决大模型"通才"困境。作为包含元数据、执行指南和参考资料的能力模块,Skill通过渐进式披露机制高效调用,与Agent配合实现专业化执行。相比prompt,Skill具备可复用、标准化、可编排等优势,推动AI从"泛用回答者"向"专业执行者"进化。用户可通过安装现有Skill或构建个性化Skill库,积累专业经验。Skill的出现标志着AI协作方式的革新,未来将形成更成熟的Skill生态体系。

2026-01-27 14:09:30 540

原创 大模型工程师薪资大揭秘:53.7%从业者月薪50K+,附华为岗位要求与完整学习指南,非常详细建议收藏

大模型工程师薪资高涨,超半数从业者月薪超50K,2025年预计再增10%。华为等企业招聘要求涵盖分布式算法、CPU/GPU优化等核心技术,凸显大模型开发的技术门槛与价值。为帮助从业者把握AI人才机遇,业内推出104G全套学习资源包,包含视频教程、技术文档及面试指南,由资深专家团队整理,覆盖从入门到进阶的全链路知识体系。该资料包旨在助力不同背景人士快速掌握大模型开发技能,实现职业转型与薪资跃升,现可免费领取。

2026-01-26 17:18:19 1310

原创 从互联网到AI生态的演变,10个核心概念让你快速入门大模型

本文解析AI领域的10个核心概念,包括神经网络、RAG检索增强生成、智能体技术、MCP连接标准和Transformer架构等。神经网络模仿人脑神经元连接方式,通过自动学习处理复杂任务;RAG技术通过检索外部知识库增强生成内容的准确性;智能体技术使AI具备多步骤任务规划与执行能力;MCP标准实现大模型与外部系统的高效连接。这些概念帮助产品经理和开发者理解AI底层逻辑,优化应用设计,掌握训练推理等关键技术。文章还提供免费AI教学资源,助力开发者构建AI应用的理论基础。

2026-01-26 17:17:05 464

原创 小白到精通:一文搞懂大模型、AIGC、RAG、Agent和MCP的关系

本文系统介绍了大语言模型(LLM)及相关技术的发展路径。从基础的AIGC(单模态/多模态)能力,到解决实时性问题的RAG技术,再到赋予工具调用能力的Function Calling,最终演进至能自主规划决策的智能体Agent。文章重点解析了新兴的MCP协议,该协议作为AI领域的"USB-C接口",通过标准化解决了模型与外部工具的集成难题,为AI生态发展提供了统一框架。这些技术共同推动AI从简单对话工具向多功能智能助手转型,展现了AI技术的融合趋势和应用前景。

2026-01-26 17:16:09 514

原创 小白程序员入门AI大模型的20个核心概念全解析,非常详细收藏我这一篇就够了

本文用通俗语言讲解了大模型的20个核心概念,包括: 基础架构:LLM(超级预测系统)、Transformer(并行处理架构)、神经网络(数学函数嵌套)、深度学习(多层网络)、机器学习(数据找规律) 训练方法:预训练(海量文本学习)、微调(特定任务优化)、RLHF(人类反馈调优)、监督学习(带标签训练)、无监督学习(自主发现规律) 核心能力:Token(文本处理单位)、上下文窗口(记忆范围)等 实用技术:Prompt工程等 通过生活化比喻和简化术语,帮助读者快速理解AI大模型的原理与应用,为产品和技术学习打下

2026-01-26 17:15:09 492

原创 大模型概念不再混淆!从超级实习生比喻到架构全解析,建议收藏

本文通过"超级实习生"的比喻,将大模型相关概念划分为四个层级:基础交互层(Prompt和Rules)、执行工具层(Tools、Functions和Skills)、连接协议层(MCP)和知识增强层(RAG)。文章详细阐述了各层概念的定义、区别与相互关系,并通过图示展示了AI Agent的核心架构。这种分层解析帮助读者理解这些相似概念的本质差异,以及它们如何协同工作以实现AI的高级能力。同时,文章还介绍了AI大模型学习资源包,包含从入门到精通的视频教程、学习路线图、电子书籍和面试题目等全套资

2026-01-26 17:13:44 513

原创 【腾讯实习AI大模型岗位已Offer】大模型面试宝典:高频问题+答案解析,助你轻松通关,建议收藏!

本文详细记录了一位211本硕计算机科班生成功通过大模型岗位三轮面试的全过程。一面重点考察Transformer结构、BERT/GPT区别、LoRA原理等大模型知识及算法题;二面深入探讨论文细节和大模型理解;三面为HR面,关注职业规划和个人发展。作者凭借图神经网络研究背景(NeurIPS/ICDM论文)和推荐算法实习经历,成功应对技术考察。文末附赠104G大模型学习资源包(含视频教程、电子书、面试题等),由AI专家团队整理,适合不同基础的学习者提升技能。

2026-01-25 18:20:51 651

原创 大模型训练三阶段全解析:预训练、微调与对齐(程序员必看,建议收藏)

大模型训练分为预训练、微调和对齐三阶段。预阶段使用TB级数据学习通用语言能力;微调阶段通过GB级高质量数据增强指令遵循能力;对齐阶段确保输出符合人类价值观,遵循3H原则。三者共同构成完整的大模型开发流程,从知识压缩到任务适应再到人类偏好对齐,逐步提升模型性能与安全性。

2026-01-25 18:19:11 495

原创 多模态融合技术全解析:从传统架构到GPT-4o的演进之路

多模态融合技术演进:从传统到前沿的全面解析 本文系统梳理了多模态融合技术的发展历程与最新趋势。首先介绍了多模态融合的核心概念,即不同模态信息在特定层级的交互决策。随后详细分析了四种主要融合范式:早期融合(特征拼接/加权)、晚期融合(双塔结构)、Transformer时代的深度交互(Cross-Attention机制)以及当前主流的连接器范式(MLP/Q-Former/Resampler三种Projector形态)。文章还探讨了下一代原生融合技术的特点(如GPT-4o的Any-to-Any能力),并针对模态对

2026-01-25 18:18:02 596

原创 模型量化完全指南:从原理到实战加速大模型推理

模型量化技术通过将高精度参数(如Float32)转换为低精度格式(如INT8/INT4),有效压缩模型体积、提升推理速度并降低内存占用。主要分为后训练量化(PTQ)和量化感知训练(QAT)两种方式,采用均匀/非均匀量化策略。针对大模型特点,权重量化、激活值量化和梯度量化能显著减少存储和计算开销,结合静态/动态量化策略可平衡精度与效率。量化技术涉及参数粒度选择(逐层/逐通道)、位宽确定(统一/混合精度)以及误差优化方法(MSE/KL散度),是大模型部署的关键优化手段,广泛应用于视频处理、点云分析等领域。

2026-01-25 18:17:07 645

原创 Transformer模型详解:从入门到掌握大模型必备基础知识

本文介绍了一份详细的Transformer模型讲义,涵盖8个核心章节,包括Encoder-Decoder结构、文字向量化、位置编码、多头注意力机制、残差连接与层归一化、前馈神经网络及模型输出等内容。该讲义通过图文并茂的方式系统讲解Transformer原理,帮助读者深入理解这一关键模型架构,为后续学习BERT、GPT等大模型奠定基础。同时文章推荐了包含视频教程、学习路线、电子书籍和面试题解等资源的AI大模型学习礼包,由资深专家团队整理,适合不同基础的学习者提升技能并实现职业转型。

2026-01-25 18:16:06 685

原创 AI时代产品经理转型攻略:大模型学习路径与实践

AI时代产品经理必须掌握算法知识,但学习路径需循序渐进:从视频入门建立基础认知,到阅读书籍强化理解,再到实践文章和论文深化应用。产品经理无需精通代码实现,但需理解算法原理、机制和边界,才能与工程师高效协作。AI大模型正重塑各行业生态,催生高薪新职业,系统学习资源对快速掌握核心技术至关重要。建议结合可视化工具理解算法,量力而行进行实践,重点培养技术判断力而非编程能力,以适应AI驱动的产品开发新范式。

2026-01-24 14:19:11 751

原创 大模型微调完全指南:16种主流技术详解,附实战决策框架,建议收藏!

本文系统梳理了16种大语言模型微调方法,分为参数高效微调(LoRA、QLoRA等)、行为塑造(RLHF、DPO等)和能力扩展三类。针对不同资源条件(单GPU到分布式部署)和场景需求(快速原型到生产环境),提供具体的技术选型建议。强调数据质量优先、分阶段优化的实践原则,并推荐Hugging Face PEFT等工具链。特别指出2024年DPO已成为偏好对齐的主流方案,同时分析了联邦学习、端侧适配等隐私保护方案的应用价值。为开发者提供了从评估体系建立到避免常见误区的完整微调指南。

2026-01-24 14:18:16 456

原创 PaddleFormers v1.0:大模型训练全流程解决方案,性能优化与工程化落地

PaddleFormers v1.0发布:飞桨大模型全流程训练工具,支持100+主流模型,提供FP8训练优化与国产硬件适配。该工具覆盖预训练到后训练全流程,集成思维链、工具调用等产业级能力,显著提升训练性能(ERNIE-4.5训练MFU达47%)。通过CLI+YAML配置简化流程,兼容主流权重格式,支持昆仑芯等国产芯片,降低工程化门槛,加速大模型落地应用。

2026-01-24 14:16:47 592

原创 定制专属大模型如此简单:零代码微调企业级AI的完整指南

本文介绍如何通过LLaMA-Factory Online平台,将80亿参数的Qwen3-8B模型与LightLLM框架结合,打造高性能定制AI解决方案。该方案在社交情境解析、网络热梗解码等场景中展现出优秀的语义理解和推理能力,同时兼顾成本效益与性能表现。平台提供一键式部署流程,大幅降低模型微调门槛,使企业无需复杂配置即可快速构建智能客服、知识问答等应用。通过实际案例演示,验证了该方案在处理复杂语义、长文本理解等方面的优势,为中小企业提供经济高效的大模型落地路径。

2026-01-24 14:14:59 601

原创 2026必看!春节前AI大模型爆发:DeepSeek V4技术突破与国产模型格局分析,程序员收藏指南

2026年春节前AI大模型将迎来新一轮爆发,DeepSeek V4、Kimi K3等国产模型备受关注。文章重点分析了DeepSeek V4的技术突破,其采用Engram技术和75%-25%黄金法则,优化传统Transformer架构的效率问题,将更多算力用于推理而非记忆。相比Kimi和GLM的商业化策略,DeepSeek选择从底层架构创新,若V4兑现承诺,可能重塑国产大模型格局。作者认为DeepSeek的技术自信和论文先行的做法展现了其潜力,有望成为中国AI的下一个引领者。

2026-01-24 14:08:44 724

原创 程序员收藏!35岁转行大模型开发完全指南:零基础也能学会,前景无限好

35岁转行AI大模型开发完全可行,零基础也能通过系统学习掌握技能。AI大模型作为技术热点,在自然语言处理、图像识别等领域应用广泛,行业需求持续增长。学习路径分为7个阶段:从系统设计到微调开发,再到行业应用实战,强调理论与实践结合。配套提供104G学习资源包,包含视频教程、200本PDF书籍和100套商业化方案,助力从入门到就业。35岁正值学习黄金期,持续实践是关键,掌握该技能将为职业发展带来新机遇。

2026-01-21 20:07:24 970

原创 让LLM听懂指令!利用现有模型生成高质量合成数据进行微调

摘要:本文介绍利用Disilabel开源框架,通过多阶段LLM协作生成高质量合成对话数据的方法:先准备指令/问题,由多个候选LLM生成回答,再用更强的"评委LLM"评估质量并筛选最优回答,最终形成指令-回答配对数据集。该方法能显著提升目标模型的对话能力和指令理解能力,是目前性价比最高的微调方案,使弱模型可借助强模型高效生成训练数据,实现低成本性能提升。文章还包含详细的实现流程和技术要点说明。(149字)

2026-01-21 20:06:25 401

原创 从ChatGPT到自主AI Agent:企业级实战指南与避坑策略

本文对比了生成式AI与Agent AI的核心差异:生成式AI作为预测引擎擅长内容生成,而Agent AI具备决策循环能力,可自主执行多步骤计划。尽管市场热度高涨,但多数企业仍处于Agent AI应用的早期探索阶段,Gartner预测40%的项目将因成本、价值或风险问题被取消。文章强调实现Agent AI价值需要平衡组织变革与技术部署,建议采取渐进式实施路径,从基础自动化逐步迈向自主性,避免盲目跟风导致项目失败。通过真实案例警示企业需理性看待Agent AI的成熟度与实施难度,才能将技术潜力转化为实际商业回报

2026-01-21 20:03:41 605

原创 AI Agent框架宝典:11个顶级框架对比与实战指南,小白也能上手

本文精选11款主流AI Agent框架(LangChain、AutoGen、CrewAI等),系统分析各框架的核心功能、优劣势及适用场景。这些框架支持开发者构建具备自主推理、多步任务执行能力的智能系统,涵盖从开源到商业化的多种解决方案。文章提供了框架选择标准和发展趋势研判,指出模块化设计、多Agent协作成为技术演进方向。通过代码示例展示了不同框架的典型应用方式,为开发者根据项目需求(如工作流自动化、复杂问题求解等)选择合适工具提供实用参考。

2026-01-21 20:02:44 618

原创 大模型风口已至:程序员必学RAG、AI Agent,2025年薪资突破30K_大模型应用开发实战,非常详细建议收藏!

程序员如何把握AI浪潮?本文指出结合现有技术与大模型是关键,掌握AI能力的工程师更具竞争力。详细介绍了RAG、AI Agent、Transformer等核心技术,提供五大模块学习路径:从基础微调、RAG应用到智能体开发,通过热门项目拆解积累实战经验。文章强调AI学习需要系统化,分享了大模型学习资料和90天成长路线图,帮助程序员实现技术升级和薪资提升。

2026-01-19 17:15:33 951

原创 2026 Agent元年:揭秘大模型Agent落地难题与Skills解决方案

摘要:2025年AI Agent面临"幻象断层"问题,演示效果惊艳但实际落地困难。核心原因是现有Agent缺乏真实业务场景的判断力。Claude提出的Skills技术通过模块化技能组合解决这一问题,Skill0平台已收录400+企业级场景Skills,帮助企业构建可靠智能体。大模型AI岗位需求激增,学习资料显示系统掌握AI技术能带来显著职业优势。

2026-01-19 17:13:30 580

原创 AI产品经理:未来5年最值得All In的职业,小白也能上手

AI产品经理将成为未来5年最具前景的职业之一。文章分析了三类人群在AI转型中的困境:观望者、迷茫者和跑偏者,并指出应用型AI产品经理是最适合普通人的发展方向。作者提出三步学习路径:夯实产品基础、掌握AI项目落地能力、补充AI相关知识,强调实践应用而非技术钻研。同时推荐系统学习资源,帮助职场人快速转型AI领域,抓住职业发展新机遇。

2026-01-19 17:12:21 573

原创 AI时代产品经理重生指南:从情感陪伴AI玩具看大模型落地实战架构与不确定性驾驭之道

本文探讨AI时代产品经理角色转变,强调从识别真实需求到战略落地的完整方法论。通过情感陪伴AI玩具和社交场景案例,揭示产品经理需从确定性功能交付转向驾驭不确定性,构建稳定价值框架,实现价值重构的底层逻辑。

2026-01-19 17:11:25 595

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除