- 博客(1173)
- 收藏
- 关注

原创 全新发布!大模型LLM学习路线图:全面掌握学习路径,非常详细收藏我这一篇就够了
ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料,让不少人惊呼:“未来是属于AI的”。AI大模型——成为互联网从业者必备技能。
2024-08-11 19:00:00
2735

原创 大模型引领机器学习未来:探索趋势与多元化应用
在过去的几年里,机器学习大模型(Large Models)成为了人工智能领域最热门的话题之一。这些大模型通过大规模数据训练,展现出前所未有的能力,推动了自然语言处理、计算机视觉等领域的飞速发展。本文将详细探讨机器学习大模型的基本概念、技术实现、应用场景以及未来的发展趋势。机器学习大模型,通常指的是包含数十亿甚至上千亿参数的深度学习模型。与传统的小规模模型相比,大模型通过大规模数据和计算资源进行训练,能够更好地捕捉复杂的数据模式和特征。
2024-07-13 10:28:53
1471

原创 LLM系列:KVCache及优化方法
KV cache的峰值显存占用大小: b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n),输入序列长度s,输出序列长度n,第一个2表示k/v cache,第二个2表示fp16占用2个字节,transformer模型的层数为l,隐藏层维度为h。按查询头Q分组,每个组共享一个K和V。如下以GPT2结构第i层推理过程为例,分析KV Cahche计算过程,其中WQi,WKi,WVi,WOi,Wupi,WdowniW_Q。
2024-07-01 12:00:00
2791

原创 吴恩达AI系列:教你如何用Langchain封装一本书
编辑吴恩达(英语:Andrew Ng,1976年4月18日—)是斯坦福大学计算机科学系和电气工程系的客座教授,曾任斯坦福人工智能实验室主任。2011年,吴恩达在谷歌创建了谷歌大脑项目2014年5月16日,吴恩达加入百度,负责“百度大脑2017年12月,吴恩达宣布成立人工智能公司Landing.ai,担任公司的首席执行官。
2024-06-27 10:17:28
2702
原创 成为一名优秀的AI产品经理:2025年AI产品经理必备:大模型产品经理终极学习路线图,一篇就够了!
成为一名优秀的AI产品经理,需要具备技术背景、产品直觉、市场洞察力和沟通能力。学习路线包括:1. 基础知识阶段,涵盖计算机科学、编程语言和数学基础;2. 人工智能技术基础,学习机器学习、自然语言处理和计算机视觉;3. 产品管理和商业分析,掌握产品生命周期、敏捷开发和市场调研;4. AI产品经理特定技能,如数据驱动决策、技术选型与集成、模型管理;5. 实践与案例研究,参与实战项目和行业分析;6. 软技能提升,包括沟通协作、项目管理和领导力;7. 持续学习与成长,跟进行业动态和参加培训。通过系统学习和实践,逐步
2025-05-19 21:05:29
1297
原创 大模型学习路线全攻略:从理论到实践,一篇文章让你成为大模型行业佼佼者【大模型学习路线】
大模型是人工智能领域中的大型预训练模型,通过处理大量数据学习世界知识,具备强大的语言理解和生成能力。例如,GPT-3能够回答问题、生成文章和代码。大模型的出现推动了自然语言处理、机器翻译等技术的发展,并在医疗、教育、娱乐等领域展现出广泛应用前景。学习大模型不仅是紧跟技术趋势的关键,还能提升就业竞争力、解决问题能力和创新能力。大模型在科学研究和社会生活中也发挥着重要作用,学习它有助于个人成长和参与社会变革。
2025-05-19 21:02:44
413
原创 大模型微调新手全流程友好指南
关于大模型微调的文章已经写过有两篇:大模型微调与RAG检索增强有何区别?从基础原理到案例分析全面详解和一文带你了解大模型微调的前世今生,基础概率和理论原理内容基本上都涵盖全面,因此本篇文件不做过多的原理解释说明,主要聚焦于大模型微调的实战和各个代码功能模块细节的讲解。我是Fanstuck,致力于将复杂的技术知识以易懂的方式传递给读者,每一篇文章都凝聚着我对技术的深刻洞察。从人工智能的基础理论到前沿研究成果,从热门框架的深度解析到实战项目的详细拆解,内容丰富多样。无论是初学者想要入门,还是资深开发者追求进
2025-05-19 20:59:07
629
原创 浙江大学:AI大模型如何破局传统医疗|附48页文件下载
本文节选自浙江大学发布的一份关于大模型AI应用的报告,报告共48页,提供了完整版PDF下载。报告指出,2025年大模型应用将迎来爆发式增长,相关岗位需求激增,初级工程师平均薪资可达28K,且70%企业面临模型调优难题。报告强调,掌握AI工具将显著提升个人生产效率与薪资水平。为帮助读者学习大模型AI,报告提供了详细的学习路径,包括提示词工程、RAG系统、智能体开发等核心内容,并分享了《AI进化工具包》,涵盖大厂内部LLM落地手册、提示词设计模板库等实用资源。报告分为四个学习阶段,从初阶应用到商业闭环,帮助读者
2025-05-19 20:53:49
528
原创 Agent 生态爆发前夜:一文读懂《AI Agent Protocols》(含 7 大类型+未来趋势)
近期,Agent技术的快速发展催生了多种Agent协议,这些协议在智能系统的自主决策、记忆、规划和工具调用等方面发挥着关键作用。LLMAgent不仅能够生成文本,还能通过调用外部工具(如API、数据库)完成任务,其核心组件包括基础模型、记忆系统、规划能力、工具使用和行动执行。AgentProtocol则是一套标准化规则,用于规范Agent之间及Agent与外部系统的交互,提升效率、操作范围和标准化程度。综述提出了一个二维分类框架,将AgentProtocol分为面向上下文和面向Agent间的协议,并进一步细
2025-05-19 20:51:41
321
原创 图解BERT,非常详细收藏这一篇就够了
2018年是自然语言处理(NLP)领域的关键转折点,标志着NLP进入了“ImageNet时刻”。这一年,BERT模型的发布被视为NLP新时代的开端,它打破了多项纪录,并在语言任务中表现卓越。BERT的开源和预训练模型的提供,使得构建涉及语言处理的机器学习模型变得更加高效。BERT建立在Semi-supervised Sequence Learning、ELMo、ULMFiT、OpenAI transformer和the Transformer等巧妙理念之上。BERT的使用方式包括句子分类、情感分析和事实核查
2025-05-19 20:49:35
449
原创 通用AI Agent系统AI Manus
AIManus是一个通用的AIAgent系统,支持在沙盒环境中运行各种工具和操作。它通过Docker进行开发与部署,兼容OpenAI接口,支持FunctionCall和JsonFormat输出,推荐使用Deepseek与GPT模型。AIManus的部署指南推荐使用DockerCompose,包含前端、后端和沙盒三个子项目。用户发起对话时,系统会创建Sandbox环境,并通过PlanActAgent处理用户消息,调用相关工具完成任务。AIManus还提供了开发调试指南和项目地址,帮助用户快速上手和进行二次开发
2025-05-19 20:47:50
747
原创 大模型入门学习教程:一篇详细的指南,助你轻松掌握AI大模型基础知识!非常详细收藏这一篇就够!
本文介绍了机器学习的基础知识,重点包括数学基础、Python编程和神经网络。数学基础涵盖线性代数、微积分和概率论与统计学,这些是理解机器学习算法的关键。Python作为机器学习的常用编程语言,需掌握其基础语法、数据科学库(如NumPy、Pandas)和机器学习库(如Scikit-learn)。神经网络部分则涉及其基本结构、训练与优化方法、过拟合问题及其解决方案,以及如何实现多层感知机。这些内容为深入学习和应用机器学习提供了坚实的基础。
2025-05-16 17:27:05
983
原创 如何微调你的第一个领域大模型?非常详细收藏这一篇就够
1.1 什么是微调大模型?微调(Fine-tuning)大模型,就像是给一个已经学富五车的大脑(预训练的基础大模型),进行一次针对性的“专业强化训练”。基础大模型通过海量数据学习了通用的语言规律和世界知识,但对于特定领域、特定任务,它可能还不够“精通”。微调就是利用少量、高质量的领域数据,在基础模型之上继续训练,让模型更好地适应新的任务或领域。也就是让大模型从一个广度很强的通才,在某个领域树上的技能加强变成一位专才。
2025-05-16 17:24:03
848
原创 DeepSeek模型在113个国企的部署及应用
DeepSeek模型在央企和地方国企的部署广泛且深入,应用场景丰富,为企业的智能化转型提供了强大助力。1. DeepSeek模型在央企和地方国企中均有大规模部署。据不完全盘点,央企有60家完成部署,地方国企涵盖北京、上海、天津、重庆四大直辖市的40多家企业 ,涉及众多不同层级和领域的企业单位。2. 能源行业:包括中国石油天然气集团有限公司、中国海洋石油集团有限公司、国家电网有限公司等央企,以及北京能源集团有限责任公司、重庆水务环境控股集团有限公司等地方国企,在能源生产、传输、存储等环节利用DeepS
2025-05-16 17:21:57
762
原创 北京大学:AI工具深度测评与选型指南v1.0|附319页PDF文件下载
本文提供了AI工具的深度测评与选型指南,涵盖了文本生成、图像编辑、音频处理、代码辅助及大模型管理等多类AI工具的详细分析。通过实测案例,如DeepSeek、Gemini、通义千问等,展示了不同场景下的工具推荐。此外,文章还探讨了AI技术对就业市场的影响,指出掌握AI技能的重要性,并提供了从基础到高级的AI学习路径,包括提示词工程、RAG系统、智能体开发等关键技能的学习资源。整体上,本文旨在帮助读者理解AI工具的应用价值,并指导如何有效学习和利用这些工具以提升个人竞争力。
2025-05-16 17:18:06
1023
原创 Dify v1.4.0 重磅发布:支持大模型多模态输出了!
Dify v1.4.0 以两周年品牌焕新为契机,带来多项核心功能升级:新增暗黑模式提升夜间使用体验,支持文本与图像多模态输出(如 Gemini 2.0 Flash Exp 模型)强化数据交互能力,引入问题编辑功能优化内容准确性;底层优化包括 Redis 客户端缓存提升性能、工作流节点故障处理机制增强稳定性,同时新增 Milvus Token 访问和 OpenSearch IAM 认证等多数据库支持,插件页面实现多语言覆盖等。以下是详细更新内容(老样子,为了尽量减少个人认知偏差影响,以下内容由大模型翻译而来)
2025-05-16 17:12:09
682
原创 Java + LangChain = 王炸!
在 Baeldung 上看到了一篇介绍基于 Java + LangChain 开发大语言模型应用的基础入门文章,写的非常不错,非常适合初学者。于是,我抽空翻译了一下。我的公众号应该有很多读者对这方面的知识感兴趣,希望这篇文章能够起到入门的作用。1. 简介
2025-05-16 17:07:37
1001
原创 【什么是提示词工程】一文搞懂:提示词和提示词工程
网上充斥着各种类型的提示词模板,也有大量的文章在写提示词工程,而且在招聘网站上提示词工程师的薪水还非常的高。那么提示词和提示词工程到底有什么区别呢?为什么提示词工程师的薪水会非常的高呢?今天一文帮你搞懂。一、提示词与提示词工程的起源与定义提示词(Prompt)的概念最早伴随大语言模型(LLM)的兴起而普及。2020年后,随着GPT-3等模型的突破性进展,提示词工程(Prompt Engineering)逐渐成为一门系统性学科。特别是吴恩达在YouTube上分享的提示词工程一系列教学视频后,更
2025-05-16 17:04:48
676
原创 【增强版】RAG学习路径分享_大模型RAG学习路线
本文介绍了RAG(Retrieval-Augmented Generation)技术的学习路线,分为基础、入门和进阶三个层次。基础部分包括prompt、langchian、milvus等技术的学习;入门版则简化了数据处理方法,重点掌握langchian、milvus和rag格式prompt;进阶版则深入探讨了数据处理、query改写、检索和生成模块的优化。此外,文章还提到了大模型AI的就业前景,指出2025年大模型相关岗位缺口达47万,初级工程师平均薪资28K。文章最后提供了大模型AI的学习路径,包括初阶应
2025-05-15 17:04:52
1066
原创 大模型产品经理必备技能揭秘:如何成为大模型行业精英?文末更有惊喜福利等你来拿!
1.AI产品经理是什么回答这个问题前我们首先得理清楚什么是AI产品经理,它和传统的互联网产品经理有什么区别。1.1 AI产品经理职责主要职责一方面是规划如何将成熟的AI技术应用在各个领域不同场景中,提升原有场景的效率或效果等;另一方面是基于业务方的需求如何用现有的AI技术或者AI技术组合予以实现,甚至有可能联合技术团队孵化新的AI软件解决方案或者AI硬件产品。
2025-05-15 17:01:11
625
原创 大模型助力程序员提效:探索AI技术在编程工作中的实际应用!
随着人工智能技术的快速发展,大模型如GPT、文心一言等在软件开发中的应用日益广泛,显著提升了程序员的工作效率。本文通过四个实际场景展示了大模型如何助力开发工作:1)在接手其他语言项目时,大模型能快速生成代码解释,帮助开发者理解项目逻辑;2)在日志查询中,大模型可自动生成脚本,简化日志分析过程;3)在接口集成时,大模型能根据文档生成Java Bean代码,减少手动编码时间;4)在学习新技术时,大模型提供详细解释和最佳实践,加速学习进程。这些应用不仅提高了开发速度,还提升了代码质量和用户体验。随着AI技术的进步
2025-05-15 16:58:43
674
原创 Manus 放开注册,全网最完整的操作指南来啦
因为目前 Manus 只能通过海外网络访问,所以这里需要先准备网络对网络,可以选择科学上网,这个比较敏感,就不多说了,有一些工具,大家可以加我微信领取。当然萝卜哥还是更加推荐下面这个访问,就是申请一个海外服务器,因为海外服务器,相当于是默认拥有了海外 IP,和你自己置身于海外效果是一样的。不要以为租借服务器最低都是按照一个月来计费的,我找到了一个超级给力的平台,属于后付费,就是你可以先试用,然后再根据试用的情况来扣费,最最主要的是我们可以临时租借一台服务器,什么时候用完了,立刻销毁,就可以停止计
2025-05-15 16:46:28
1068
原创 如何使用 Qwen3 实现 Agentic RAG?
本文介绍了如何部署由阿里巴巴最新Qwen3驱动的AgenticRAG系统。工具栈包括CrewAI用于代理编排,Firecrawl用于网络搜索,以及LightningAI的LitServe用于部署。文章详细描述了AgenticRAG的工作流程:检索代理接受用户查询,调用相关工具获取上下文并生成见解,写作代理生成响应。接着,文章逐步讲解了如何通过LitServe实现和部署该系统,包括设置LLM、定义研究代理和任务、定义写作代理和任务、编排Crew、解码请求、预测和编码响应。最后,文章提供了客户端代码示例,展示了
2025-05-15 16:43:32
515
原创 【AI大模型开发】大模型训练技术简介
在人工智能蓬勃发展的当下,大语言模型(LLM)成为了众多应用的核心驱动力。从智能聊天机器人到复杂的内容生成系统,LLM 的卓越表现令人瞩目。而这背后,大模型的训练过程充满了奥秘。本文将深入探讨 LLM 训练的各个方面,带您揭开其神秘面纱。一、大模型训练的步骤概述从整体上看,训练LLM主要包括两个关键阶段:预训练(Pre-training)后训练(Post-training):微调、RL和RLHF。
2025-05-15 16:40:03
954
原创 零基础转行大模型攻略:年薪50W+,保姆级学习路线与避坑指南,一篇掌握所有关键知识点_转行大模型
随着ChatGPT-5、Claude-3等大模型的快速发展,AI行业迎来新一轮革命,大模型相关岗位需求激增,薪资水平显著提升。本文为转行者提供了一份全面的攻略,涵盖行业现状、学习路线、避坑指南和职业规划。大模型岗位主要分为数据、工程、算法和部署四大方向,建议零基础者优先选择数据或工程方向。学习路线分为四个阶段:夯实基础、进阶突破、实战落地和专业深耕,推荐了相关资源和实战项目。同时,文章指出了转行中的常见误区,如盲目追求算法岗、忽视代码质量等,并提供了简历优化、面试准备和薪资谈判的建议。最后,文末附赠了价值2
2025-05-14 16:11:00
899
原创 2025年程序员必备:大模型入门书籍精选,知乎3.4万赞推荐,助你快速入门!【大模型入门书籍】
在知乎上,“如何系统的入门大模型?”这一话题引发了超过50万读者的热烈讨论。作为程序员,了解大模型及其应用开发至关重要。为此,我整理了一份2025年畅销的大模型书单,涵盖大模型学习与人工智能基础。书单包括《GPT图解 大模型是怎样构建的》,以轻松幽默的方式讲解技术细节;《大模型应用开发 动手做 AI Agent》,探索AI Agent的设计与实现;《ChatGPT原理与应用开发》,介绍基于大语言模型的商业应用开发;《AIGC自动化编程:基于ChatGPT和GitHub Copilot》,深入探讨AI自动化编
2025-05-14 16:08:49
695
原创 DeepSeek R2成本大幅降低97%,引发OpenAI关注,开启AI新纪元!
DeepSeekR2是近期科技圈热议的焦点,作为一款即将发布的AI模型,它以其1.2万亿的参数量、HybridMoE3.0架构和780亿的动态激活参数,展现了强大的学习能力和任务处理效率。其单位推理成本相比GPT-4降低了97.3%,预示着AI将进入“平价时代”。此外,DeepSeekR2的多模态能力在视觉理解模块中表现出色,准确率高达92.4%,并支持8bit量化压缩,模型体积缩小83%。该模型完全基于华为昇腾910B芯片集群训练,展现了国产芯片在AI领域的实力。DeepSeekR2的发布可能会改变AI行
2025-05-14 16:04:59
878
原创 A2A与MCP全方位对比:案例实操详解,深入分析两者差异与优劣!
A2A(Agent-to-Agent)协议是由Google与多家技术合作伙伴共同推出的开放协议,旨在为AI Agents提供标准化的通信方式,使其能够互相发现、安全交换信息并协调行动。与MCP(大模型上下文协议)不同,A2A专注于Agent之间的水平协作,而MCP则侧重于Agent与外部工具/数据源的垂直集成。A2A通过“AgentCard”实现Agent的发现与识别,并通过JSON-RPC协议进行任务指令、状态更新等信息的传递。尽管MCP可以通过将Agent封装为API实现部分A2A功能,但A2A提供了更
2025-05-14 16:01:30
935
原创 综述 | 全面解读AI Agents
《The Rise and Potential of Large Language Model Based Agents: A Survey》是由复旦大学自然语言处理实验室和米哈游公司联合撰写的一篇综述性论文,发布于2023年9月14日。论文共48页,引用文献673条,全面探讨了基于大语言模型(LLM)的智能体的发展潜力和应用前景。文章首先回顾了智能体的哲学起源和技术发展,指出大语言模型因其强大的语言理解、推理和知识学习能力,成为构建通用智能体的理想基础。论文提出了一个包含大脑、感知和行动三部分的智能体框架
2025-05-14 15:56:18
899
原创 Manus开放注册使用:白送1000积分,每日免费使用,却遭遇用户吐槽风波!
通用AI智能体平台Manus于5月12日宣布面向全球用户开放注册,提供免费每日任务和一次性积分奖励。Manus的付费订阅计划包括不同价位的选项,但积分数量有限。自3月6日推出以来,Manus经历了市场的高期待和质疑,用户对其性价比和实际使用效果持保留态度。体验显示,Manus的用户界面优化良好,但积分消耗快,免费用户难以充分体验。与市场上其他免费AI工具相比,Manus的付费模式可能不具竞争力。用户需精准下达指令,Manus才能有效执行任务,但其结果输出谨慎,可能影响用户体验。Manus的开放使用是其商业化
2025-05-14 15:53:49
921
原创 大模型算法岗面试宝典:100道常见面试题及答案详解,助你轻松应对算法岗面试挑战!
本文为准备大模型算法岗位面试的求职者提供了一份全面的面试题清单,涵盖了基础理论、模型结构、训练微调策略、应用框架、分布式训练和模型推理等多个方面的知识点。文章首先介绍了主流的开源模型体系,如Transformer、PyTorch Lightning、TensorFlow Model Garden和Hugging Face Transformers。接着,解释了prefix LM和causal LM的区别,前者通过添加任务相关前缀引导输出,后者则基于已生成部分预测后续内容。此外,文章探讨了大型模型涌现能力的原
2025-05-13 21:31:07
1574
原创 大模型人才今年的薪资。。。爆了!
2025年,AI技术正深刻改变程序员的职业前景。阿里云、字节跳动、腾讯等科技巨头纷纷将AI技术融入核心业务,大模型开发能力成为招聘新标准。传统开发模式逐渐被AI原生应用取代,掌握AI技术成为职业生存的关键。AI相关岗位需求激增,薪资逆势上涨,而传统岗位则面临缩水。为应对这一变革,程序员需迅速掌握大模型原理、应用技术及项目实操经验。通过系统学习,如RAG、Fine-tuning等技术,程序员可以提升自身竞争力,抓住AI技术带来的职业机遇。AI技术的普及不仅提升了生产效率,也为个人职业发展开辟了新路径。
2025-05-13 21:02:09
514
原创 DeepSeek R1思考推理技术综述:142页全面复盘,深入解析核心技术与原理!
DeepSeek-R1作为一种大型推理模型(LRM),通过生成多步骤推理链条来解决问题,与直接输出答案的传统大型语言模型(LLM)形成对比。研究揭示了DeepSeek-R1在推理过程中的几个关键特点:首先,其推理链条通常包括问题定义、分解、重构和最终决策等基本单元,表现出结构一致性。其次,模型存在“推理甜点区”,即推理长度在某一范围内时性能最佳,过长或过短都会影响效果。此外,DeepSeek-R1在处理长文本和复杂句子时表现不如专门优化的LLMs,且在处理控制句时推理链条过长,显示出与人类处理方式的差异。这
2025-05-13 17:28:13
525
原创 【AI开发】大模型数据工程简介
在人工智能的快速发展中,大模型已成为技术创新的核心。数据工程和知识图谱在大模型研发中扮演着关键角色,它们共同推动了大模型的进步。数据工程涉及数据的采集、预处理、标注和构建,确保数据质量以提升模型性能。知识图谱则通过图结构优势和组织优势,与大模型结合,增强模型的知识表示和推理能力。大模型研发是一个复杂过程,需要数据工程提供坚实的数据基础,同时结合知识图谱以拓展应用边界。随着技术进步,大模型将在更多领域发挥重要作用,带来更多便利和创新。
2025-05-13 17:24:20
783
原创 2025年大模型学习路线图:史上最全、最新的学习指南!
本文介绍了大模型学习路线,建议从主流模型如Llama入手,再选择中文模型如Qwen、Baichuan或ChatGLM进行实践,快速掌握prompt工程。随后深入学习模型架构和微调技术。对于更深入的学习,建议从GPT和BERT等基础模型开始,理解底层原理,并结合小模型进行实际应用。学习目标包括熟悉主流大模型技术架构、掌握NLP基础、推理加速技术及深度学习框架。参考项目和书籍如torchkeras、llm-action、《大规模语言模型:从理论到实践》等,为学习者提供了丰富的资源。
2025-05-12 10:47:28
1004
原创 未来人人都是AI产品经理!【大模型时代】产品经理为何必须学习大模型?_大模型产品经理
产品经理学习大模型(如 GPT-3、BERT 等)可以显著提升工作效率和决策质量。大模型能够帮助产品经理更高效地分析用户需求,通过情感分析和主题提取快速识别用户痛点。此外,大模型还能预测市场趋势,协助产品经理进行市场定位和战略决策。在项目管理方面,大模型可以自动生成文档和会议纪要,提高沟通效率。产品设计方面,大模型提供设计灵感和建议,优化产品功能和用户体验。数据分析方面,大模型能够进行销售预测和用户行为分析,支持数据驱动的决策。学习大模型还能帮助产品经理快速适应新兴技术,保持竞争力。掌握大模型技术将使产品经
2025-05-12 10:44:51
530
原创 大模型的定义:什么是大模型?
大模型是指具有数千万甚至数亿参数的深度学习模型,广泛应用于自然语言处理、图像生成等领域。大模型与小型模型的主要区别在于其全能化和通用化能力,能够处理更复杂的任务和数据。大模型可分为语言大模型、视觉大模型和多模态大模型,按应用领域则分为通用大模型、行业大模型和垂直大模型。大语言模型(LLM)是基于Transformer架构的AI系统,专注于处理和理解人类语言,如ChatGPT等。其核心机制是注意力机制,能够精准捕捉语义关联。大语言模型在企业数字化中的应用包括知识库问答系统、问答式BI系统和智能体系统。学习AI
2025-05-12 10:43:09
751
原创 2025年AI+赋能中小企业出海营销的创新与发展报告|附72页PDF文件下载
本文提供了一份关于AI大模型学习的完整报告,涵盖了从基础理论到实际应用的多个阶段。报告详细介绍了大模型的系统设计、提示词工程、平台应用开发、知识库应用开发、微调开发、多模态大模型应用以及行业应用开发等内容。通过学习,读者可以掌握大模型全栈工程实现、解决实际项目需求、进行企业数据AI应用开发等技能。报告还提供了丰富的学习资源,包括学习路线图、商业化落地方案、视频教程、PDF书籍、面试题合集和产品经理资源合集。读者可以通过扫描文中的二维码免费获取这些资源。
2025-05-12 10:40:48
397
原创 解锁AI时代的核心通关密码——为什么你必须搞懂RAG、Agent、MCP?
在AI时代,大模型虽展现出强大的语言理解和生成能力,但仍面临三大挑战:幻觉制造(生成错误信息)、纸上谈兵(无法执行具体操作)和数据孤岛(难以连接现实系统)。为解决这些问题,RAG、Agent和MCP三项技术被引入,分别作为知识快递员、智能指挥官和万能接线员,共同提升AI的实用性和准确性。RAG通过检索增强生成技术确保信息准确性,Agent自主拆解和执行任务,MCP则打通AI与外部系统的连接。这三项技术的协同作用,使得AI在如健康管理等实际应用中更加高效和可靠。此外,文章还提供了学习AI大模型的详细路线图和资
2025-05-12 10:38:43
977
原创 2025年上海交通大学最新《动手学大模型》实战教程与PPT资源大放送!
《动手学大模型》是上海交通大学2024年春季《人工智能安全技术》课程的一部分,由张倬胜教授主讲,旨在提供大模型编程实践教程,帮助学习者快速入门并应用大模型技术。课程内容包括大模型系统设计、提示词工程、平台应用开发、知识库应用开发、微调开发、多模态大模型搭建及行业应用等多个阶段。学习者可以通过课程掌握大模型全栈工程实现、解决实际项目需求、进行AI应用开发及垂直领域模型训练等技能。课程资源包括AI大模型学习路线图、商业化落地方案、视频教程、PDF书籍及面试题合集等,全部免费提供。
2025-05-12 10:36:40
296
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人