自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(398)
  • 收藏
  • 关注

原创 全新发布!大模型LLM学习路线图:全面掌握学习路径,非常详细收藏我这一篇就够了

ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料,让不少人惊呼:“未来是属于AI的”。AI大模型——成为互联网从业者必备技能。

2024-08-11 19:00:00 2317

原创 大模型引领机器学习未来:探索趋势与多元化应用

在过去的几年里,机器学习大模型(Large Models)成为了人工智能领域最热门的话题之一。这些大模型通过大规模数据训练,展现出前所未有的能力,推动了自然语言处理、计算机视觉等领域的飞速发展。本文将详细探讨机器学习大模型的基本概念、技术实现、应用场景以及未来的发展趋势。机器学习大模型,通常指的是包含数十亿甚至上千亿参数的深度学习模型。与传统的小规模模型相比,大模型通过大规模数据和计算资源进行训练,能够更好地捕捉复杂的数据模式和特征。

2024-07-13 10:28:53 1410

原创 LLM系列:KVCache及优化方法

KV cache的峰值显存占用大小: b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n),输入序列长度s,输出序列长度n,第一个2表示k/v cache,第二个2表示fp16占用2个字节,transformer模型的层数为l,隐藏层维度为h。按查询头Q分组,每个组共享一个K和V。如下以GPT2结构第i层推理过程为例,分析KV Cahche计算过程,其中WQi,WKi,WVi,WOi,Wupi,WdowniW_Q。

2024-07-01 12:00:00 2300

原创 吴恩达AI系列:教你如何用Langchain封装一本书

​编辑吴恩达(英语:Andrew Ng,1976年4月18日—)是斯坦福大学计算机科学系和电气工程系的客座教授,曾任斯坦福人工智能实验室主任。2011年,吴恩达在谷歌创建了谷歌大脑项目2014年5月16日,吴恩达加入百度,负责“百度大脑2017年12月,吴恩达宣布成立人工智能公司Landing.ai,担任公司的首席执行官。

2024-06-27 10:17:28 2597

原创 2024升级版AI大模型转行指南:从零基础到精通,一篇文章助你全面掌握!

引言随着人工智能和大模型(如GPT-4、BERT等)技术的快速发展,越来越多的专业人士希望转行进入这一领域。大模型开发涉及复杂的技术体系和多样的应用场景,对从业者的知识和能力提出了较高要求。本文将详细解析转行大模型开发所需的知识体系、能力要求及学习路径,并结合实际数据和案例,提供深度指导。

2024-11-03 13:00:00 363

原创 一文看完多模态:从视觉表征到多模态大模型

写到这里,吐一口老血,但还是要总结一下。本文梳理了2019年之后视觉表征和多模态表征的一些变化,主要涉及视觉表征和视觉预训练、多模态表征对齐(或融合)和多模态预训练、多模态大模型技术的相关工作。各工作之间的简化关系如图42,脉络主要是结合笔者自己各阶段的实践经历和认识,会出现一些地方不严谨的地方,欢迎指正。图43关于未来畅想,从最近的工作上来看,多模态的呈现出以大模型为主线,逐步开始朝长上下文、混合模态、世界模型、多模态生成等方向发展。

2024-11-03 10:15:00 639

原创 从零开始:大模型面试题全面指南(含答案)

LangChain是一个用于构建和运行大型语言模型应用的开源框架。它提供了一套工具和组件,帮助开发者将大型语言模型(如 GPT-3)与其他工具和API结合,以完成更复杂的任务。1、LangChain包含哪些核心概念?Components:可重用的模块,例如API调用、数据库查询等。Chains:将多个Components链接在一起以完成特定任务的流程。Prompt Templates: 用于指导语言模型生成输出的文本模板。Output Parsers:解析语言模型输出的工具。

2024-11-02 12:49:18 631

原创 强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法

在当今的大模型时代,以 RLHF 为代表的强化学习方法具有无可替代的重要性,甚至成为了 OpenAI ο1 等模型实现强大推理能力的关键。但这些强化学习方法仍有改进空间。近日,强化学习之父、阿尔伯塔大学教授 Richard Sutton 的团队低调更新了一篇论文,其中提出了一种新的通用思想 Reward Centering,并称该思想适用于几乎所有强化学习算法。这里我们将其译为「奖励聚中」。该论文是首届强化学习会议(RLC 2024)的入选论文之一。

2024-11-02 12:47:01 468

原创 50种大模型应用探索:AI技术如何改变我们的生活

随着人工智能技术的迅猛发展,AI大模型在各个领域的应用日益广泛。百度创始人、董事长兼首席执行官李彦宏在2024年世界人工智能大会上表示,目前AI技术发展路线发生了方向性改变,已从过去辨别式人工智能转向了未来生成式人工智能。本文将为大家盘点AI大模型的50个应用场景,并按,带您了解AI如何深刻改变我们的工作与生活。AI大模型在自然语言处理方面表现出色,广泛应用于对话系统、自动翻译、语音识别、文本生成和语义分析等领域。NLP技术已成为现代人工智能的重要组成部分,帮助企业和个人提升沟通效率和信息处理能力。

2024-11-01 21:40:20 782

原创 构建本地知识库:RAG实践与Ollama+AnythingLLM集成

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。

2024-11-01 21:37:52 597

原创 吞吐量最高飙升20倍!破解强化学习训练部署难题

在训练和生成阶段,3D-HybridEngine 使用不同的三维并行配置,包括:流水线并行(PP)、张量并行(TP)和数据并行(DP)的大小。训练阶段的并行配置为 𝑝-𝑡-𝑑。在生成阶段,我们新增一个新的微数据并行组(Micro DP Group,𝑑𝑔),用于处理 Actor 模型参数和数据的重组。生成阶段的并行配置为 𝑝𝑔-𝑡𝑔-𝑑𝑔-𝑑。

2024-11-01 21:35:10 745

原创 AI产品经理零基础到进阶学习路线图,非常详细收藏我这一篇就够了

AI产品经理要具备技术理解能力,垂直场景认识积累,和一套完整的AI产品落地方法论。要完成一款落地的AI产品必须既懂技术边界,又懂需求边界。

2024-10-31 14:27:44 1246

原创 FastGPT4.7 + chatglm3-6b + m3e 本地部署

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;这里需要注意的是,你可以选择提前下载好模型,或者是运行的时候再下载,提前下载可能会快很多~

2024-10-31 14:24:58 811

原创 大模型学习路线(2025最新)神仙级大模型教程分享,不用感谢,请叫我活雷锋!

大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1. 数学基础学习资料2. 编程基础学习资料第二阶段:机器学习基础这一阶段主要涉及经典机器学习算法的学习,以及如何使用它们解决实际问题。1. 机器学习理论学习资料第三阶段:深度学习入门在这个阶段,您将学习深度学习的基本概念和框架。1. 深度学习基础学习资料2. 深度学习框架学习资料第四阶段:自然语言处理基础。

2024-10-30 20:34:55 1272

原创 AI「长脑子」了?LLM惊现「人类脑叶」结构并有数学代码分区,MIT大牛新作震惊学界!

LLM居然长「脑子」了?就在刚刚,MIT传奇大牛Max Tegmark团队的新作,再次炸翻AI圈。论文地址:https://arxiv.org/abs/2410.19750他们发现,LLM学习的概念中,居然显示出令人惊讶的几何结构——首先,它们形成一种类似人类大脑的「脑叶」;其次,它们形成了一种「语义晶体」,比初看起来更精确;并且,LLM的概念云更具分形特征,而非圆形。具体而言,这篇论文探讨了LLM中稀疏自编码器(SAE)的特征向量表示的。

2024-10-30 20:26:30 1438

原创 精挑细选:如何在众多大模型书籍中找到最适合你的那一本?

大模型的书这么多,该怎么选呢?本期书单就来教大家怎么快速地从众多大模型书中选到你想要的那一本!大模型入门不可错过的一本书,就是这本大模型界的经典畅销书**《大规模语言模型》**!系统性强,内容适合初学者,如果你想知道如何构建一个大模型应用,系统了解大模型的构建,选它准没错!**▊《**张奇,桂韬,郑锐,黄萱菁 著解码大语言模型奥秘,引领机器智能新时代详细介绍构建LLM的四个主要阶段:预训练、有监督微调、奖励建模和强化学习解读ChatGPT背后的核心技术配全书PPT课件。

2024-10-29 16:27:21 898

原创 天池蚂蚁AFAC大模型挑战赛-冠军方案(含代码)

首先给出我们的整体框架。Prompt构造我们设计了三个核心子模块,以帮助模型规范其输出。这三个子模块分别是产品召回、意图识别和例子召回。这些模块相互配合,确保模型能够更准确地理解和执行任务。训练阶段为了获得多样化的结果,我们对Prompt中的内容进行了部分删减,并调整了few-shot逻辑,从而得到五个不同的Lora微调模型。这种多样化的训练策略有助于模型在不同场景下的表现更加全面和可靠。推理阶段除了句子级别的多数投票外,我们还进行了许多其他尝试。

2024-10-29 16:22:23 743

原创 面了美团大模型算法岗,已拒 Offer

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。今天分享我们一星球成员的美团大模型面经:背景:北京985本硕,4篇顶会‍‍‍‍两面结束,二面面试官说虽然优秀,但不能够入选人才计划。

2024-10-28 09:55:04 674

原创 字节大模型内部赛马,下一个爆款 or 烧钱深坑?

在人工智能技术的推动下,AI视频和音乐生成领域正成为科技巨头们争夺的新战场。本文将探索字节跳动在AI赛道上的探索之路,以及它能否在这场技术竞赛中创造出下一个爆款产品。今年最火的两款全球AI产品,当属视频生成大模型产品Sora和音乐生成大模型产品Suno。今年4月,经Suno爆改的周杰伦金曲《以父之名》和《夜曲》直接封神,在音乐界掀起了一股不小的波澜。不少人认为,这两条赛道会催生出新的爆款产品,谁能够拿下其中一条赛道,谁就能成为AI行业的王者。两款AI产品的火爆,迅速点燃了国内大厂对这两条赛道的争夺战。

2024-10-28 09:53:15 664

原创 AI产品经理:学习路线+PDF电子书+大厂面经+视频教程,看完我拿下小小面试官

AI产品经理是一个跨学科、跨领域的综合性岗位,它要求从业者不仅要有扎实的技术基础,还要有敏锐的市场洞察力和卓越的项目管理能力。通过上述学习清单的系统学习,你将能够逐步构建起成为一名优秀AI产品经理所需的知识体系和技能。记住,持续学习和实践是通往成功的关键。祝你在AI产品经理的道路上一帆风顺!💛我是老李,希望一些小见解可以帮助到大家,学习路上一起加油哦!END。

2024-10-26 13:43:54 921

原创 现在的 AI 产品,有多难做?

优秀的 AI 产品,离不开好的大模型。但 API 只是第一步,真正面向用户的是产品。从 API 到产品,中间的工程转化过程很少被人提起,而这,正是 AI 产品经理真正需要关注和聚焦的地方。坦率来说 2024 年围绕大模型,产品的发展速度比之前预期的要低一些,比如在 BI 领域,Chat BI 声量很大,但落地下来效果并不好,这个也很正常,因为每个人总是会在短期内高估技术带来的价值,而在长期范围低估技术带来的价值。很多时候即使用了新技术,收益可能也没有想象的那么大,这是一个事实。

2024-10-26 13:39:43 879

原创 大模型零基础入门到精通,2024最新最全大模型学习路线规划

目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。

2024-10-25 21:03:27 989

原创 RAG实战手册:构建面向未来的企业智能问答平台

构建一个强大且可扩展的企业级 RAG 系统显然需要仔细协调互连的组件。从用户身份验证到输入护栏、查询重写、编码、文档摄取和检索组件(例如向量数据库和生成器),每个步骤都在塑造系统性能方面发挥着关键作用。在不断发展的 RAG 系统领域,我们希望这份实用指南能帮助开发人员和领导者获得可操作的见解!

2024-10-25 21:00:31 905

原创 字节,AI产品经理面试,拿下offer!

作为AI产品经理,首要的职责都是去定义一个 AI 产品。这包括,搞清楚这个行业的方向,这个行业通过 AI 技术可以解决的问题,这个 AI 产品具体的应用场景,需要的成本和它能产生的价值。这就要求 AI 产品经理除了具备互联网产品经理的基础知识之外,还需要了解 AI 技术的边界,以及通过 AI 技术能够解决的问题是什么。

2024-10-24 11:27:34 1458

原创 全面指南:中国人工智能大模型技术创新与应用

尽管大模型技术具有广泛的应用前景和潜力,但仍需要解决其**可靠性和可解释性问题,降低应用部署代价,提高迁移能力,并加强安全与隐私保护。**这些问题的解决将是大模型技术未来能否得到广泛应用和发展的关键。

2024-10-24 11:25:25 1185

原创 2024最新最全【大模型学习路线规划】零基础入门到精通!,大模型学习干货分享,总结的太详细了

目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。

2024-10-23 14:05:31 625

原创 dpo 的局限性【大模型训练】大模型零基础入门到精通

不由感叹,数学不愧是 AI 技术的第一生产力,但凡我当初对这个证明过程多深入思考一会儿,也不至于踩那么多坑。

2024-10-23 14:02:19 786

原创 大模型常见面试题梳理——SFT

SFT的重点是学习样式,而非知识注入,所以SFT的样本在于其质量而非数量,少量但精良的样本往往胜过大批中低品质的样本,实现同样甚至更优的微调效果。这个没有一个明确的答案,但是根据大家的经验和一些开源的技术报告来看,SFT的数据一般在2k-10k之间,epoch可以根据SFT数据设定为2-10个epoch,epoch和数据量成反比,SFT的数据在准确,不在量大,所以在数据比较精确的情况下,一般5k的数据5个epoch,就能得到一个不错的效果。相比之下,Chat模型则是在指令微调的有监督学习下进行训练的。

2024-10-22 13:43:41 694

原创 赢得3K下载!专为RAG打造的数据清洗利器

OmniParse 旨在成为一个摄取/解析平台,您可以在其中摄取任何类型的数据,例如文档、图像、音频、视频和 Web 内容,并获得最结构化、最可操作且对 GenAI (LLM) 友好的输出。目前来看项目的思路的实用性很不错,当然目前项目在使用上也有一些不完善,比如它擅长解析英语,但对于中文等语言可能会有困难,另外对于PDF中公式转LaTeX会有困难,具体的可以参考项目给出的信息。

2024-10-22 13:39:04 788

原创 精选指南:如何从众多大模型书籍中找到最适合你的那一本,大模型书籍最全整理

大模型的书这么多,该怎么选呢?本期书单就来教大家怎么快速地从众多大模型书中选到你想要的那一本!大模型入门不可错过的一本书,就是这本大模型界的经典畅销书**《大规模语言模型》**!系统性强,内容适合初学者,如果你想知道如何构建一个大模型应用,系统了解大模型的构建,选它准没错!**▊《**张奇,桂韬,郑锐,黄萱菁 著解码大语言模型奥秘,引领机器智能新时代详细介绍构建LLM的四个主要阶段:预训练、有监督微调、奖励建模和强化学习解读ChatGPT背后的核心技术配全书PPT课件。

2024-10-21 11:53:57 900

原创 细数RAG的12个痛点,英伟达高级架构师亲授解决方案

检索增强式生成(RAG)是一种使用检索提升语言模型的技术。具体来说,就是在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程。这种技术能极大提升内容的准确性和相关性,并能有效缓解幻觉问题,提高知识更新的速度,并增强内容生成的可追溯性。RAG 无疑是最激动人心的人工智能研究领域之一。有关 RAG 的更多详情请参阅机器之心专栏文章《[专补大模型短板的RAG有哪些新进展?这篇综述讲明白了]但 RAG 也并非完美,用户在使用时也常会遭遇一些「痛点」。

2024-10-21 11:51:05 643

原创 【CSDN】最新最全AI大模型资料包:学习路线+书籍+视频+实战+案例...

GPT模型是在大规模语料库上进行训练的。在预训练阶段,它会学习构建句子的基本结构、单词之间的关系,句子的文法和语法等等。在对其进行微调后,它可以实现诸如对话生成、文本摘要、机器翻译、命名实体识别等任务。预训练阶段:gpt对网络上海量的各行各业数据进行预训练(学习),因此在预训练完成之后,就会知道很多网络上的知识,比如:你问它“世界上第一高峰是?”,它就会根据之前预训练中的海量数据学习到的知识进行回答。督导式阶段:如果你问它的问题,之前预训练数据中,没有包含答案,那么就需要进行督导式学习。

2024-10-19 20:33:14 944

原创 深度学习领域,你心目中 idea 最惊艳的论文是哪篇?

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。:生成领域的新贵,比如OpenAI的DALL·E 2和Google的Imagen,引领文本生成图像领域的新风向,效果令人惊艳,甚至引发了AI绘画与画师之争!,当时还在搞物理,买了数学之美看着玩儿,被这个经典算法狠狠的惊艳到了,简洁优雅,据说是Google早期崛起的大功臣。

2024-10-19 20:29:38 940

原创 AI产品经理全攻略:从入门到精通,一篇文章带你彻底了解工作全流程

需求定义主要要定义清楚以下几点:1、做什么?2、为什么要做,有什么收益和价值?3、业务预期目标、上线期限?为了方便理解,我们以开发一套筛选薅羊毛用户的产品进行举例说明。1、项目背景团队发现负责的项目数据统计有些异常,细查之后,发现存在夜间偷数据的情况,大致行为路径如下:淘宝上买一批手机号,注册新账号。通过自动薅羊毛的方式(新手礼包、每日签到、周任务等),获取免费券等资源。夜深人静的时候,使用免费券或积分批量下载数据。亡羊补牢,犹未晚矣。我们决定开发一套筛选薅羊毛用户的产品,彻底堵住这个缺口。

2024-10-18 11:41:08 947

原创 利用Llama3、CrewAI与Groq打造高效智能邮件客服系统

本次采用实现了一个小型的邮件智能客服,从回复的内容看,整体效果还是OK的,希望对这方面感兴趣的朋友有一些启发。

2024-10-18 11:37:21 899

原创 书单指南 | 面对众多大模型书籍,如何精准挑选最适合你的那一本?

大模型的书这么多,该怎么选呢?本期书单就来教大家怎么快速地从众多大模型书中选到你想要的那一本!大模型入门不可错过的一本书,就是这本大模型界的经典畅销书**《大规模语言模型》**!系统性强,内容适合初学者,如果你想知道如何构建一个大模型应用,系统了解大模型的构建,选它准没错!**▊《**张奇,桂韬,郑锐,黄萱菁 著解码大语言模型奥秘,引领机器智能新时代详细介绍构建LLM的四个主要阶段:预训练、有监督微调、奖励建模和强化学习解读ChatGPT背后的核心技术配全书PPT课件。

2024-10-17 10:29:37 1484

原创 使用LLaMA-Factory训练LLM大模型并用ollama调用

创建E:\mypath文件夹,将其添加进用户环境变量Path中,之后会用。

2024-10-17 10:25:05 894

原创 零基础入门至高手进阶:AI大模型学习全攻略,大模型小白到大模型高手,非常详细收藏我这一篇就够了

作为零基础小白学习AI大模型,可以遵循以下步骤:基础知识学习:数学基础:学习线性代数、概率论、统计学、微积分等,这些是理解AI模型的数学原理的基础。编程基础:至少掌握一门编程语言,如Python,这是实现AI算法的工具。了解AI基本概念:学习机器学习、深度学习的基本概念,了解不同的模型和算法,如线性回归、决策树、神经网络等。选择合适的学习资源:利用在线课程和教程,比如Coursera、edX、Udacity等平台上的相关课程。

2024-10-16 11:29:06 1265

原创 从零开始:Llama3本地部署教程,离线也能玩转AI

4月18日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验,Llama3 8B效果已经超越GPT-3.5,最为重要的是,Llama3是开源的,我们可以自己部署!本文和大家分享一下如何在个人电脑上部署Llama3,拥有你自己的GPT-3.5+!

2024-10-16 11:25:46 1009

原创 模拟面试:腾讯 AI 产品经理

场景:你正在参加腾讯 AI 产品经理的职位面试。面试官是一位经验丰富的产品总监。1、您如何理解 AI 产品经理的角色,以及您认为这个角色在腾讯 AI 战略中扮演着怎样的作用?回答思路:展示你对 AI 产品经理职责的理解,包括市场调研、用户需求分析、产品设计、开发管理、数据分析等。结合腾讯的 AI 战略,例如腾讯云 AI、腾讯 AI Lab 等,阐述你认为 AI 产品经理在推动腾讯 AI 战略落地、打造 AI 产品生态中的重要作用。

2024-10-15 21:27:27 763

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除