想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。
今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。
这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。
首先,我们会用到Ollama,功能是运行大模型。
Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。
目前Ollama支持的大语言模型有:Llama 3、Phi 3、Mistral、Gemma、Neural Chat、Starling、LLaVA、Solar等,当然也包括我们今天演示的Qwen2.5开源大模型。
其次,是Qwen2.5(通义千问)开源大模型。
Qwen(通义千问)是阿里巴巴旗下的大语言模型,具有70亿参数规模,基于Transformer研发。
最后,是AnythingLLM,大模型增强应用,用来做界面化的交互,同时也可以处理文本标记,以及向量数据存储,这样我们就可以给自己部署的大模型投喂数据了。
OK,正式开始!
首先,我们来下载Ollama,官网是:https://ollama.com/
按照页面现实,点击“Download”按钮,进入下载页面。
Ollama支持macOS、Linux和我们常用的Windows操作系统,按照自己电脑安装的操作系统进行选择就可以了。
我用的是Windows 11。
文件并不大,只有700多M,安装软件下载到本地后,直接双击进行安装!
安装软件不复杂,相信各位都能顺利完成。
安装成功后,系统会自动进入命令提示符界面。
现在我们下载AnythingLLM,官网地址是:https://anythingllm.com/
同样的,我们根据自己电脑操作系统,选择对应的安装程序进行下载。
不到300M的安装程序,很快就可以下载下来了。
安装过程和常规软件安装差不多,按照提示进行安装即可。
接下来,咱需要安装一个大模型,今天演示安装通义千问(Qwen)大模型。
在Ollama官网,搜索“Qwen”,如下图所示。
我们选择“qwen2.5”。
在出现的页面中,我们选择复制这段命令,或者直接在命令提示那里输入也可以。
回车后,命令开始执行。
系统会自动开始下载Qwen2.5大模型,文件有点大,4.7G,所以,需要耐心等待一下。
安装成功了,如下图:
这时,我们就可以向大模型提问了,比如:
好了,现在我们还差一个友好的交互界面。
我们打开AnythingLLM,来设置界面化的操作模式。
首先我们先对它进行相关配置的设置。点击左下角的设置按钮。
LLM首选项要选“Ollama”,模型选:Qwen2.5:latest,其它选项可以设置为默认值就可以了。
向量数据库设置,根据实际情况选择即可,这里我们选择了默认的LanceDB。
接下来,嵌入首选项设置,嵌入引擎提供商我们选择Ollama,Ollama Embedding Model我选择的是:nomic-embed-text。
nomic-embed-text是需要提前安装的,安装方法也很简单,在Ollama官网搜索nomic-embed-text,然后复制执行代码,在命令提示符状态下进行执行即可。
复制代码,并执行,系统会进行自动下载并安装。
如果我们要给大模型投喂数据,那么投喂的数据都需要先进行向量化处理,而nomic就是对文本进行向量化处理的工具。
返回上一步的操作界面,我们来创建一个工作区,任意命名这个工作区即可。
我们对这个工作区做一个简单的设置,选择“聊天设置”,同理,要设置成Ollama和Qwen2.5。
接下来设置“代理设置”,一样的配方,一样的味道。
都设置完成后,也象征着我们顺利完成了本地大模型部署,现在可以和它进行对话了哦。
激动的心,颤抖的手,可以在对话框里开始提问了哦~~~
OK,搞定,手工~
且慢,如果我们想投喂数据该怎么操作?
我们只需点击“设置”按钮旁边的这个按钮,即可进入投喂数据操作界面。
投喂操作界面如下:
点击上传文件就可以了。
上传文件后,系统会进行向量化处理,处理后保存,那么下次提问,就可以检索出我们投喂的数据了。
比如,我随便编排了一段文字,然后投喂进去。
这个“锻炼项目”是我瞎编的。
接下来我们再向它提问,它的回答就已经有了我们投喂的数据。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓