行业落地:顺丰,来源:Coggle数据科学
Dify 是一个开源的大语言模型(LLM)应用开发平台,融合了后端即服务(Backend as a Service, BaaS)和 LLMOps 的理念,旨在帮助开发者快速构建和部署生成式 AI 应用。
Dify核心功能
-
低代码/无代码开发:提供可视化界面,允许开发者通过拖拽、配置等方式定义 Prompt(提示词)、上下文和插件,无需深入底层技术细节。
-
模块化设计:采用模块化架构,开发者可以根据需求选择性地使用不同模块来构建 AI 应用。
-
丰富的功能组件:
-
AI 工作流:通过可视化画布构建和测试强大的 AI 工作流。
-
RAG 管道:支持从文档摄入到检索的完整流程,可从 PDF、PPT 等常见格式中提取文本。
-
Agent 智能体:基于 LLM 的推理能力,可以自主规划任务、调用工具,完成复杂任务。
-
模型管理:支持数百种专有和开源的 LLM,如 GPT、Llama2 等,并提供模型性能比较功能。
-
-
支持多种大语言模型:Dify 已支持主流的模型供应商,如 OpenAI 的 GPT 系列、Claude3 等。
-
数据集管理:提供强大的数据集管理功能,允许用户上传、管理文本和结构化数据。
Dify 现存缺点
任何技术产品都不可能完美无缺,Dify也不例外。深入了解其局限性,有助于我们在使用过程中更好地权衡利弊,充分发挥其优势,同时规避潜在问题。
改造 Dify 开发平台
新增MySQL配置项
-
新增MySQL配置项在Dify的配置文件中,我们新增了MySQL的配置选项,允许用户指定MySQL数据库的连接信息,包括主机地址、端口、用户名、密码以及数据库名称。这为用户提供了更多选择,使其可以根据自身需求灵活选择数据库类型。
-
修改数据库和表结构由于PostgreSQL和MySQL在语法和数据类型上存在差异,我们需要对Dify的数据库表结构进行适配性修改。这包括调整字段类型、索引定义以及约束条件等,以确保在MySQL环境下能够正常运行。
-
SQL语句的适配与修改Dify在运行过程中会执行大量的SQL语句,用于数据的增、删、改、查操作。为了兼容MySQL,我们对这些SQL语句进行了逐一审查和修改,确保它们能够在MySQL中正确执行。这一过程需要仔细处理,以避免因语法差异导致的运行错误。
检索增强
-
为Dify新增了对Elasticsearch 8的支持,使其能够充分利用Elasticsearch强大的全文检索、聚合分析以及实时数据处理能力。
-
引入了Contextual Retrieval(上下文检索)功能。通过这一功能,Dify能够在检索时充分考虑查询的上下文背景,从而返回更加符合用户意图的结果。
-
新增了对GraphRAG(图增强检索)和LightRAG(轻量级检索)的支持。这两种检索方式各有优势,能够为开发者提供更多选择。
集成内部服务
落地软件机器人 Agent 场景
Dify作为一个强大的AI开发平台,不仅在开发效率上表现出色,更在数据处理、智能问答、业务流程自动化以及SQL生成等场景中展现了强大的能力。
Dify 实践总结
在未使用Dify平台之前,顺丰的开发流程面临着诸多挑战。开发应用前后端、集成和封装LLM能力需要花费大量时间,尤其是开发前端应用时,往往需要从零开始搭建。然而,引入Dify平台后,开发效率得到了显著提升。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓