在工业领域推广大模型和人工智能(AI)技术的实施时,许多企业面临的不仅是技术挑战,还有如何有效地识别应用场景、理解技术带来的变革及其风险等一系列问题。为了确保人工智能能够在工业中取得成功,企业需要解答以下十个关键问题,这些问题将帮助决策者明确目标、评估风险并制定实施计划。
问题一,工业场景的本原问题是什么?
在考虑引入大模型和人工智能时,首先要明确当前工业流程中的核心问题。每个行业和企业的挑战可能不同,可能是提升生产效率、减少能源消耗、优化质量控制、降低成本等。比如,针对一个反应器、精馏塔或者整个工厂,企业需要准确识别其当前问题。例如,是否面临设备故障频发、生产过程不稳定、资源浪费严重等问题。明确这些问题将帮助企业避免盲目采用技术,而是能够聚焦在解决最迫切的痛点上。不忘初心是也!
问题二,人的智能在这个场景里发挥什么作用?
在讨论“人工智能”时,需要首先考虑“人类智能”的作用。把人的智能如何发挥作用的缘由搞明白,再把这些智能进行“机器化”,这就是人工智能技术应用的基本方法。机器化或自动化了的智能,用来取代人类在某些环节中的工作,这就是以始为终,明确了目的和方式。
问题三,自动化了的智能(即AI)如何带来效益?
人工智能的一个主要优势是其能够在不依赖大量人工干预的情况下,实现自动决策和优化。通过利用机器学习和数据分析,AI可以预测设备故障、优化生产调度、提高生产效率和质量等。然而,自动化了的智能,也就是AI,是否能够带来实际效益,取决于应用场景和技术实现的质量。因此,决策者需要评估AI系统能为企业带来的具体效益,并量化其预期回报,以便确定是否值得投入资源。
问题四,对AI带来的幻觉的接受度是多少?
AI模型,尤其是大自然语言模型,往往会产生某种程度的“幻觉”,即给出一些看似合理但实际上并不准确的结果。这种不确定性和潜在的错误判断是AI应用中不可忽视的挑战。虽然AI在很多场景下能提供有价值的建议,但在工业领域,尤其是涉及到安全和高风险操作时,决策者必须了解并接受AI的不确定性。企业需要评估这种不确定性对业务的影响,并确定如何在实际应用中管理和缓解这种风险。
问题五,相关技术的难度和成熟度?
人工智能技术的成熟度和实施难度是影响成功与否的重要因素。在许多领域,尤其是工业环境中,技术可能需要高度定制化或需要大量的研发工作。决策者需要对现有技术的成熟度和行业适应性进行评估。比如,某些技术已经相对成熟,可以迅速部署,而另一些则可能尚处于实验阶段,存在较高的不确定性。因此,在实施之前,技术可行性和实施难度的评估至关重要。
问题六,知识的收集颗粒度需要到什么程度?
AI的效果直接依赖于数据和知识的质量和颗粒度。对于工业应用而言,数据和知识的颗粒度需要足够精细,以便模型能够准确地分析和预测。例如,在预测设备故障时,可能需要收集来自传感器的详细数据。而在生产调度优化时,所需的数据颗粒度可能较为宽泛。因此,决策者需要根据具体需求确定所需数据的精细度,同时评估收集和存储这些数据的可行性。
问题七,知识的贡献者是谁?
在工业中,知识的来源通常非常广泛,包括操作工人、工程师、设备供应商以及行业专家等。AI模型的训练和优化往往需要来自不同领域的专业知识。因此,确定谁是知识的贡献者并确保他们能够准确地表达并传递关键信息,成为了实施过程中至关重要的一环。知识管理的好坏,直接影响到AI系统的效果和可信度。
问题八,谁是项目的倡导者和用户?
一个成功的AI项目离不开强有力的倡导者和明确的最终用户。倡导者通常是公司高层管理人员,他们负责项目的战略规划和资源分配,而用户则是AI系统的最终使用者,包括一线生产人员、工程师和管理人员等。两者的合作关系和沟通效果将决定项目是否能够顺利推进。特别是用户对AI系统的接受程度和使用便利性,将直接影响项目的实际效果。
问题九,企业内谁是核心技术人?
实施AI项目需要一个强有力的技术团队,核心技术人员通常包括数据科学家、AI工程师、系统架构师等。团队成员需要具备一定的行业背景,熟悉企业的生产流程和技术要求。此外,企业应当确保这些技术人员能够充分理解并协调AI技术与业务需求之间的关系,以确保项目能够顺利实施并解决实际问题。
问题十,现在有多少钱做这件事?
在进行AI项目规划时,预算是一个至关重要的考量因素。企业需要根据项目的规模、技术难度和实施周期,制定合理的预算方案。无论是100万、1000万还是更高的预算,决策者都需要清楚预算与项目目标之间的关系,并确保预算能够有效支撑项目的实施。良好的预算管理能够确保项目按时、按质完成,同时避免因预算不足导致的项目半途而废。
总结
在工业场景中实施大模型和人工智能技术,不仅仅是引进一种新技术,更是对企业运营方式和管理模式的一次深刻变革。通过回答以上十个关键问题,企业可以更清晰地识别实施过程中的挑战和机遇,做出科学的决策,从而确保AI技术能够在工业中落地生根、创造实际效益。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓