最近有些小伙伴,想要求职AI领域的产品经理,特别是AIGC的产品经理,但是不知道面试官会问哪些问题,也就不知道如何开始准备?该准备哪些东西?要准备到什么程度?最终导致迟迟不敢开始。
下面总共5家大厂:
百度&腾讯&科大讯飞&商汤&蚂蚁金服,均已拿到offer,面试问题罗列如下,仅供大家参考:一、科大讯飞AI产品经理面经(已拿offer)
1.1 科大讯飞AI产品面经****业务技术面
1、简单讲一下你这个AIGC的项目(薛老板带着做的项目)
2、在做这个项目过程中应用了什么算法模型?为什么?
3、这个项目上线了吗,当时为什么要做这个项目呢?
4、这个项目是你独立完成的嘛,还是有导师带你呢?
5、聊一下你另一个项目,你当时做调研的维度是什么
6、你们做的这个产品相比于竞品有什么核心优势吗
7、你希望在这段工作中获得什么
8、 你认为AIGC/AI产品未来的发展方向是?
9、AI产品和普通产品有什么区别?工作流程以及核心技能等维度
1.2 科大讯飞AI产品面经-GM面
1、说一下你的职业规划
2、为什么想做AI这个方向?
3、你认为AI在未来什么领域上会有发展空间
4、刚刚谈到AIGC,如果AIGC和教育结合,你认为会有哪些点
5、之前有用到过一些电子产品,可以挑一个说一下优势和劣势嘛
6、你知道AI目前在B和C有哪些落地场景吗?
1.3 反问环节:
1、您对这个岗位的期待是什么
2、您怎么看AIGC和教育的结合
3、您怎么看GPT和百度文心一言的竞争二、商汤 AI产品经理面经(已拿offer)
2.1 商汤科技AI产品面经-业务技术面
1、你做的这个AI项目(薛老板带着做的对话机器人项目)使用的最核心的算法是什么?这种算法有哪些优缺点?
2、对于AIGC和大模型了解多少?
3、之前有做过机器学习相关的AI产品吗?为什么想做产品经理?
4、你为什么想来商汤,你希望从这段工作中获得什么
5、各个主流的深度学习平台的功能差异化
6、你对这些深度学习平台的评价是什么
7、可以简单说一下你未来的规划吗
8、你做AI产品有哪些优劣势?
2.2 商汤科技AI产品面经-GM面
1、系统的介绍一下你做的这一款AI产品
2、能给我讲一下你负责的这个项目的具体实现逻辑吗?
3、一款AI产品落地整个过程中,产品经理的工作流程和核心职责是什么?
4、请举一个实际案例,说明你的技术背景在跟研发沟通上、技术评估上很有优势,说明你在这方面比其他人厉害。
5、我们的产品工作中会遇到一些实际突发应急问题,需要你能把控住,有很强的项目管理能力。举例说明你有这方面的能力。
6.你觉得自己做产品经理最大的优势?
7.你还有什么问题想问我的?
2.3 反问环节提问问题:
(1) 结合今天面试,对我的专业能力和今天的面试表现,您觉得有哪些不足和提升建议?
(2) 如能入职贵司,您希望半年内甚至一年内,对我工作成绩有怎么期望?最后跟HR聊了一下具体薪资和商汤的一些福利三、蚂蚁金服AI产品经理面经(已拿offer)
3.1 蚂蚁金服AI产品面经-业务技术面具体岗位要求,设计一个蚂蚁金服内部自动客服系统。
1.自我介绍(每次面试必问)。
2.请介绍下你在研究生期间做人脸识别项目用的什么算法。
3.谈谈你对人工智能行业的认识,现在的商业化的场景,以后的能在哪些领域应用以及发展趋势?
4.最喜欢用的一个APP,喜欢的理由,还有哪些地方可以改进的。
5.简单介绍下你对深度学习的理解,有哪几种深度学习算法/机器学习算法?
6.介绍一下K-Means的算法的优点缺点,使用场景。
7.针对微信消息撤回还会留痕,很多人不爽,你是如何看待?
3.2 蚂蚁金服AI产品面经-GM面
1、有没有体验过AIGC相关的应用?你认为未来会在哪几个领域有比较好的前景?
2、实际案例,说明在产品工作里,你是如何将一个用户需求变成一个落地的AI产品方案。
3、对于Diffusion模型的实现原理了解多少
4、你觉得自己做AI产品经理最大的优势?
5、谈谈AI当前在金融行业都有哪些落地场景和应用?
6、微信"发现"里如果减少几个入口,你应该觉得减少哪个,理由?
7、假如领导给你十个需求,研发只能做一个,你如何说服你的领导?四、腾讯AI产品经理面经(已拿offer)
**4.1腾讯AI产品面经-业务技术面
Q1:你这个AI项目用到什么算法?有没有其他更好的方法,这种方法有没有试过?top1的solution是咋样的?A1:实话说,尽量在面试前准备多一点,尤其是关于产品的多种解决方案以及采用的算法框架上,这一点相对来说比较考察你的学习能力。
Q2:针对你的这个项目上线之后,有哪些“量化”的数据成果?A2:还是简历的问题,一定要提前准备好模型的评估指标,以及准备好数据表现。
Q3:谈谈这个领域有哪些竞品?以及竞品的优缺点?(该部门业务主要是做AI+云产品)A3:既然是产品面试,在已知所在岗位要面向的产品时,竞品分析报告必须得提前做好!这里我也是早就做了准备,主要是针对腾讯云/百度云/阿里云/Amazon等做了个分析(产品功能/推广/运营模式/商业化)。
Q4:关于产品,有没有看过一些书籍或者资料?A4:这个问题相对来说有点闲聊,说了下人人,pmcaff一些网站以及《AI产品经理:方法、实战》,所以说一些该看的书还是要看的,至少AI产品的一些基本书籍必须看看。
4.2 腾讯AI产品面经-总监面
Q1:自我介绍A1:这个基本是面试第一环节吧,讲一下过往经历跟岗位的匹配度,然后引导面试官看简历就好
Q2:还是简单说下实习经验这块,做了什么,达到了什么效果?A2:关键数据这块算是高频问题,所以这样的话还是需要提前准备好,把做的东西好好说下,只要对项目很熟悉,没啥难度,不过要有条理,按点答复。
Q3:问的一个产品问题,针对目前腾讯云热度不够,想给用户带来一些归属感,如果给你做这么一个社区产品,你会怎么做?
A4:这一块主要是考察的产品运营的能力1)腾讯内部员工孵化一些不错的员工,日常写一些使用教程之类的上传,有奖励;2)通过腾讯这个平台,让业界的其他从事云事业的小伙伴(尤其是一些刚开始玩的大学生)加入,做一个类似于GitHub这样的开源社区。3)培养种子用户,从一些平台(csdn)请一些高访问的发帖人过来,然后针对他们已经不错的帖子转发过来
4.3 腾讯AI产品面经-HR面
Q1:自我介绍?A1:
同上Q2:问到意愿城市?A2:因为这个岗之前听技术面的老大(电面完就加了微信,保持联系没坏处)说了,这个岗在北京,所以我就直接说留北京了,先拿下offer再说
Q3:有啥问题?A3:没啥问题,这个问题走心回答就行整体HR面还是比较简答的,不会涉及到太专业相关的问题,只要前面两面没问题就可以了。最终顺利拿到offer(意料之中),个人觉得主要是有项目经验,然后AI这块也懂,比较对口。总结:1)想要做AI产品,项目经验/实习经验很重要,基本都会问!2)简历内容一点要滚瓜烂熟,提前准备高频问题以及答案3)回答问题,条理清晰,逻辑清楚,电面或视频面可以准备小本本写一些容易忘的内容4)竞品分析报告必须得有一份5)面完一次,总结一次!6)能联系到面试官一定要联系,可以在面试之外好好表现下,表忠心啥的~五、百度AI产品经理面经(已拿offer)
5.1 百度AI产品面经-业务面
1、介绍一下你的第一段实习做的项目(建议从:背景-工作-业绩等维度阐述)
2、你在这个过程中主要完成的是什么工作
3、一些项目细节的问题,问的很细致(所以一定要对自己的项目深挖,并提前准备答案)
4、你不会感觉这样的产品很重吗,有考虑过标准化的工作吗?(产品的标准化和扩展性问题)
5、你会用什么原型工具,和一些产品需要用的软件
6、各个主流的机器学习平台的功能差异化(想做AI产品这个问题必须要准备)
7、你对这些机器学习平台的评价是什么
8、之前做的是机器学习相关的解决方案架构,为什么想做产品
9、自由提问环节
5.2 百度AI产品经理面经-GM面
1、简单问了一下实习经历,没有特别细致的去问(二面跟一面的侧重点不一样,一面偏细节,二面偏宏观)
2、知识图谱中数据存储的方式都有哪些,除了最基本的三元组外
3、你来百度实习,你想学到什么(主要考察求职者稳定性)
4、之前有做过知识图谱方向的实习工作,你对知识图谱都有哪些理解(考察AI产品必须具备的技术知识)
5、后面简单聊了一下思考,比较融洽的交流了一些问题的看法(面试官套路:看似随意,其实是为了让求职者放松警惕)
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。