Claude Code怎么想的?3分钟用claude-trace,把它的系统提示词扒个底朝天!

这个组件在我刚开始用 Claude Code 的时候其实就用起来了。

只不过今天才来写这篇文章。那它有什么神秘的吗?

这个叫claude-trace的工具,能完全"看透"Claude Code的运行过程,包括系统提示词、工具调用、AI思维过程...

想学习 Claude Code 成为高手的必备工具

这是什么黑科技?

说实话,平时我们用Claude Code都是黑盒操作:

  • 不知道Claude收到了什么指令

  • 不知道工具是怎么调用的  

  • 不知道AI是怎么思考的

  • 不知道token是怎么消耗的

但这个claude-trace工具,直接把这些全暴露出来了!

原理其实很简单:通过拦截Node.js的HTTP请求,记录所有与Anthropic API的交互,然后生成可视化报告。

PS:这就像给Claude Code装了个"透视镜"!

第一步:安装claude-trace

超级简单,一行命令搞定:

npm install -g @picardd/claude-trace

官方的包是这个:@mariozechner/claude-trace

我做了中文的支持,不然中文会显示乱码,就重新打个一个安装包

小贴士:需要先安装Node.js 16+和Claude Code CLI

第二步:开始"透视"Claude Code

启动很简单:

# 基础使用
claude-trace

# 记录所有请求(包括单次对话)
claude-trace --include-all-requests

# 指定Claude参数
claude-trace --run-with chat --model sonnet-3.5

启动后会自动打开Claude Code,你正常使用就行!

第三步:查看"透视"结果

每次对话结束后,claude-trace会在当前目录生成:

  • .claude-trace/log-YYYY-MM-DD-HH-MM-SS.jsonl - 原始日志

  • .claude-trace/log-YYYY-MM-DD-HH-MM-SS.html - 可视化报告

打开HTML文件,看到的内容让我惊了:

1、Claude Code 的端倪

可以看到每次对话并不是一开始就用了 claude 4 模型的,而是用了 3.5 的模型。

到第三次的时候,才开始用 claude 4 的模型。

这个是第三次的请求参数,可以看到并不是纯用户输入的提示词,还有 <system-reminder> 附加了一些信息。

这也就是Claude Code 采用了 LLMs 调用其他 LLMs 的模式,这也是其消耗大量 tokens 的原因之一。

 这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

2、系统提示词完全暴露

You are Claude Code, Anthropic's official CLI for Claude.

You are an interactive CLI tool that helps users with software engineering tasks. Use the instructions below and the tools available to you to assist the user.

看到没,这就是Claude Code的"DNA",平时完全看不到!

3、工具调用全过程

能看到每个工具的:

  • 工具定义和参数

  • 输入数据

  • 执行结果

  • 错误信息

4、AI的思维过程

最神奇的是能看到Claude的"thinking blocks":

5、Token使用详情

详细的token消耗分析:

  • 输入token

  • 输出token  

  • 缓存命中率

  • 成本计算

这效率,一目了然!

6、使用工具清晰明了

很容易看到,我当前可以用的工具有 94 个,当然也包含了 MCP 的工具使用。

主要是每个工具的详细使用都有记录。

也就是这里就是一份权威的工具学习资料。

7、不同角色身份

从下面的图中可以看到,有 user 和 assistant 的两种身份。

user 代表的就是用户输入的提示词

assistant其实就是代表claude code 给用户辅助的提示词

更牛的高级功能

1、对话索引生成

claude-trace --index

会自动:

  • 扫描所有日志文件

  • 用AI生成对话标题和摘要

  • 创建搜索索引

  • 生成master页面

看到没,用AI来分析AI的对话,这递归操作绝了!

2、请求过滤机制

默认情况下只记录"有意义"的对话(超过2条消息),但你可以:

# 记录所有请求
claude-trace --include-all-requests

3、原始调试视图

除了友好的界面,还能看:

  • 原始HTTP请求/响应

  • JSON调试数据

  • 未过滤的所有API调用

技术原理解析

架构设计

claude-trace采用两部分架构:

1、后端拦截器

  • 注入到Claude Code进程

  • 拦截fetch()等HTTP调用

  • 记录到JSONL文件

2、前端可视化

  • 处理原始数据

  • 重构SSE消息

  • 生成交互式界面

核心技术

  • HTTP拦截:hook Node.js原生HTTP方法

  • 数据处理:解析Anthropic API格式

  • 可视化:嵌入式HTML+CSS+JS

  • AI索引:使用Claude CLI生成摘要

这技术栈,简直完美!

总结

claude-trace这个工具真的让我大开眼界:

  1. 透明化AI操作:第一次看清Claude Code的运行机制

  2. 学习AI思维:通过thinking blocks理解AI决策

  3. 优化开发流程:发现token使用和工具调用的优化点

  4. 技术研究价值:深入了解大模型应用架构

说实话,这对我们理解和使用AI工具帮助太大了!

写在最后

AI时代,工具的透明度变得越来越重要。claude-trace给我们提供了一个全新的视角,让我们不再"盲目"使用AI。

通过理解AI的工作原理,我们可以:

  • 写出更好的prompt

  • 优化工具使用策略  

  • 提升开发效率

  • 降低使用成本

这就是技术进步的魅力,不仅要会用工具,更要理解工具!

好了,今天的分享就到这里。

安啦,各位!

最后的最后,我把提示词都提炼出来成一个文档了。

后台回复 提示词 领取这份系统提示词。

之前商界有位名人说过:“站在风口,猪都能吹上天”。这几年,AI大模型领域百家争鸣,百舸争流,明显是这个时代下一个风口!

那如何学习大模型&AI产品经理?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

​​在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>我们正在讨论将Claude CodeAI-Assisted-Task-Executor集成的问题。首先需要明确两个组件的定义和功能: Claude Code: 根据上下文,Claude Code应该是指Anthropic公司开发的Claude模型系列中的代码生成能力,类似于OpenAICodex,能够根据自然语言描述生成代码。 AI-Assisted-Task-Executor: 这是一个通用术语,指能够自动执行任务的AI代理系统,如AutoGPT、BabyAGI等。它们通常具备任务分解、工具调用、执行和迭代的能力。 集成可行性分析: 1. 功能互补性: - Claude Code作为代码生成引擎,可以成为AI-Assisted-Task-Executor的工具链之一 - 当任务执行器需要完成编程相关子任务时(如"写一个Python脚本来处理数据"),可调用Claude Code生成代码 2. 技术集成方式: - API调用:通过Claude的API接口(如果开放)将代码生成请求集成到任务执行器 - 提示工程:设计特定提示模板,将任务执行器的上下文信息传递给Claude Code - 结果处理:任务执行器捕获Claude Code生成的代码,并送入执行环境运行 3. 工作流示例: ```mermaid graph TB A[AI-Assisted-Task-Executor] -->|分解任务: 需要生成数据处理脚本| B(调用Claude Code) B --> C[生成Python代码] C --> D[执行环境运行代码] D --> E{验证结果} E --成功--> F[继续后续任务] E --失败--> B ``` 4. 优势: - 利用Claude Code在代码生成领域的优势(可能比Codex更擅长某些语言或场景) - 增强任务执行器处理编程类任务的能力 - 通过组合实现更复杂的自动化流程(如自动开发工具链) 5. 挑战: - API可用性:目前Claude的API访问权限限制(需申请) - 错误处理:生成的代码可能存在缺陷,需要强大的验证机制 - 成本控制:频繁调用可能产生高昂费用 实际案例参考: - 类似集成已在Codex+AutoGPT中实现,如用户要求"创建一个网站爬虫",AutoGPT调用Codex生成爬虫脚本后自动执行[^5] - Hugging Face的Transformer Agents已展示多工具调度能力,可集成不同AI模型[^2] 结论:技术可行,但需解决API集成和错误处理问题。推荐使用开源任务执行器框架(如LangChain)进行原型开发。 $$ \text{集成度评分} = \alpha \cdot \frac{\text{API开放度}}{1} + \beta \cdot \frac{\text{错误处理能力}}{10} \quad (\alpha+\beta=1) $$ 当前建议: 1. 优先选择提供开放API的Claude版本 2. 在任务执行器中添加代码验证模块(如单元测试自动生成) 3. 设置使用频率限制控制成本 §§ 相关问题 §§ 1. Claude Code与其他代码生成模型(如Codex)相比有何优势? 2. 如何为AI任务执行器设计安全的代码执行沙箱? 3. 有哪些开源AI任务执行器框架支持自定义工具集成? 4. 如何评估Claude Code生成代码的质量?</think>### Claude CodeAI-Assisted-Task-Executor 集成可行性分析 #### 1. **技术基础兼容性** - **Claude Code 定位**: Claude Code 是基于 Anthropic 大模型的代码生成模块,功能类似 OpenAI Codex[^2],可根据自然语言描述生成可执行代码(如 Python/JS 脚本),支持代码补全和函数级生成。 - **AI-Assisted-Task-Executor 特性**: 作为任务执行代理框架,其核心能力是**调度工具链**(如代码生成器、API 等)完成端到端任务[^3]。其架构天然支持集成外部代码生成引擎: ```mermaid graph LR U[用户任务] --> Executor(任务执行器) Executor -->|调用| Claude[Claude Code] Claude -->|生成代码| Executor Executor -->|执行代码| Result[输出结果] ``` #### 2. **集成技术路径** - **API 层对接**(推荐方案): - Claude 提供 HTTP API 接口,任务执行器通过 RESTful 请求发送任务描述(如 `{"prompt": "爬取网站数据保存为CSV"}`) - 接收 Claude 返回的代码后,执行器自动注入运行环境(如 Python 解释器) $$ \text{集成度} \propto \frac{\text{API 响应速度}}{\text{代码复杂度}} $$ - **SDK 深度集成**: 参考 NVIDIA AI-Assisted Annotation Client 的设计模式[^1],可开发专用适配层: ```python # 伪代码示例:执行器调用 Claude 的 SDK from claude_sdk import CodeGenerator def execute_task(task_description): claude = CodeGenerator(api_key="YOUR_KEY") generated_code = claude.generate(task_description) return sandbox.execute(generated_code) # 在安全沙箱运行 ``` #### 3. **关键优势** 1. **任务泛化能力提升**: Claude 的代码生成能力可扩展执行器处理复杂任务的范围(如数据分析、自动化运维)。 2. **动态错误修复**: 当代码执行失败时,执行器可将错误日志反馈给 Claude 请求修正[^3],实现闭环: ```mermaid graph TB 失败执行 --> 错误分析 -->|发送错误信息| Claude --> 修正代码 --> 重新执行 ``` 3. **多语言支持**: Claude 支持 Python/Java/Go 等语言,弥补单一执行器对特定语言的依赖。 #### 4. **潜在挑战与解决方案** | **挑战** | **解决方案** | |-------------------------|----------------------------------| | 代码安全性风险 | 强制沙箱环境运行 + 静态代码扫描 | | API 调用延迟 | 本地缓存高频生成代码片段 | | 长任务上下文限制 | 任务分解 + 分阶段调用 Claude[^3] | | Claude 输出不确定性 | 添加置信度阈值过滤 ($\text{conf} > 0.85$) | #### 5. **典型应用场景** 1. **自动化数据工程**: `用户描述 → 执行器调度 → Claude 生成 ETL 脚本 → 执行器运行 → 输出数据集` 2. **AI 辅助测试**: 执行器请求 Claude 生成单元测试代码,覆盖核心功能模块[^2]。 3. **持续集成流水线**: 将 Claude 集成到 CI/CD 系统,自动修复基础代码错误。 > **结论**:技术可行且具有高实践价值,建议通过 API 优先方案实施。需关注 Anthropic 的 API 权限策略和用量成本。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值