嵌入式人工智能入门:深度学习模型的部署与优化

随着人工智能技术的发展,将深度学习模型部署到嵌入式设备成为了可能。这使得设备能够在不依赖云端的情况下,实时处理复杂的任务,如图像识别、语音处理和预测分析。

下面将介绍如何在嵌入式设备上部署深度学习模型,包括环境准备、模型优化和一个详细的代码示例。

环境准备
  1. 选择硬件平台:选择一个适合深度学习任务的嵌入式硬件平台,如NVIDIA Jetson Nano、Google Coral或Raspberry Pi 4配合Intel Neural Compute Stick 2。

  2. 设置开发环境

    • 对于Jetson Nano,安装JetPack SDK,包含了CUDA、cuDNN和TensorRT。
    • 对于Google Coral,安装Mendel Linux和Edge TPU Python API。
    • 对于Raspberry Pi,安装Raspbian系统并配置OpenVINO Toolkit。
  3. 安装深度学习框架:选择TensorFlow Lite或PyTorch Mobile,根据目标平台进行安装和配置。

模型优化
  1. 模型量化:将模型的数据类型从浮点数(例如FP32)转换为更低精度(例如INT8)。这可以减少模型的大小和计算需求,加快推理速度。
  2. 模型剪枝:移除深度神经网络中不重要的连接(权重),以减小模型大小并提高执行效率。
  3. 使用硬件加速库:利用特定硬件平台提供的库(如TensorRT、OpenVINO)来优化模型。
代码示例:部署一个图像分类模型

以下是在Raspberry Pi 4上使用TensorFlow Lite部署MobileNetV2模型进行图像分类的示例。

步骤1:安装必要的库
sudo apt-get update
sudo apt-get install python3-pip
pip3 install tensorflow
步骤2:下载并转换预训练模型

使用TensorFlow Lite提供的转换器将预训练的MobileNetV2模型转换为TFLite格式。

import tensorflow as tf

# 载入预训练的MobileNetV2模型
model = tf.keras.applications.MobileNetV2(weights="imagenet", include_top=True)

# 转换模型为TensorFlow Lite格式
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# 保存转换后的模型
with open('mobilenet_v2.tflite', 'wb') as f:
    f.write(tflite_model)
步骤3:在Raspberry Pi上加载并运行TFLite模型
import numpy as np
import tensorflow as tf
from PIL import Image

# 加载TFLite模型和分配张量(tensor)
interpreter = tf.lite.Interpreter(model_path="mobilenet_v2.tflite")
interpreter.allocate_tensors()

# 获取输入和输出张量
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# 处理输入图像
image = Image.open('example.jpg').resize((224, 224))
input_data = np.expand_dims(image, axis=0).astype('float32')
input_data = (input_data / 127.5) - 1  # MobileNetV2要求的预处理

# 运行模型
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

# 解析输出结果
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = np.argmax(output_data[0])
print("Predicted Class:", prediction)
应用场景

嵌入式深度学习广泛应用于多个领域,包括但不限于:

  • 智能安防:实时人脸识别和物体检测来提高安全性。
  • 健康监测:在可穿戴设备上实时监测健康指标。
  • 工业自动化:机器视觉用于自动检测制造过程中的缺陷。

 

⬇帮大家整理了嵌入式人工智能的资料

包括项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,嵌入式人工智能资料领取可以私信!

通过以上教学,大家应能理解并开始在嵌入式系统上部署和优化深度学习模型,解锁这些强大设备的潜力。

  • 15
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用! 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时私信沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 【资源说明】 基于深度学习LPR算法高性能国内中文车牌识别C和C++源码(可部署嵌入式移动端)+使用说明.zip 一键安装 `python -m pip install hyperlpr` 支持python3,支持Windows Mac Linux 树莓派等。 720p cpu real-time (st on MBP r15 2.2GHz haswell). # 快速上手 ```python #导入包 from hyperlpr import * #导入OpenCV库 import cv2 #读入图片 image = cv2.imread("demo.jpg") #识别结果 print(HyperLPR_plate_recognition(image)) 特性 - 速度快 720p,单核 Intel 2.2G CPU (MaBook Pro 2015)平均识别时间低于100ms - 基于端到端的车牌识别无需进行字符分割 - 识别率高,卡口场景准确率在95%-97%左右 - 轻量,总代码量不超1k行 模型资源说明 - cascade.xml 检测模型 - 目前效果最好的cascade检测模型 - cascade_lbp.xml 召回率效果较好,但其错检太多 - char_chi_sim.h5 Keras模型-可识别34类数字和大写英文字 使用14W样本训练 - char_rec.h5 Keras模型-可识别34类数字和大写英文字 使用7W样本训练 - ocr_plate_all_w_rnn_2.h5 基于CNN的序列模型 - ocr_plate_all_gru.h5 基于GRU的序列模型从OCR模型修改,效果目前最好但速度较慢,需要20ms。 - plate_type.h5 用于车牌颜色判断的模型 - model12.h5 左右边界回归模型 注意事项: - Win工程中若需要使用静态库,需单独编译 - 本项目的C++实现和Python实现无任何关联,都为单独实现 - 在编译C++工程的时候必须要使用OpenCV 3.3以上版本 (DNN 库),否则无法编译 - 安卓工程编译ndk尽量采用14b版本 Python 依赖 - Keras (>2.0.0) - Theano(>0.9) or Tensorflow(>1.1.x) - Numpy (>1.10) - Scipy (0.19.1) - OpenCV(>3.0) - Scikit-image (0.13.0) - PIL CPP 依赖 - Opencv 3.4 以上版本 Linux/Mac 编译

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值