AI大模型,正在排队寻求卖身

本文来自微信公众号:投中网 (ID:China-Venture),作者:李婉题,题图来自:视觉中国

AI独角兽卖身大潮,再添一员。

就在上周,估值近300亿的大模型明星企业Stability AI,传出了资金链断裂,正在寻求合并的消息。又有媒体曝出,近几个月,另一AI独角兽Adept领导层与科技巨头公司就出售或战略合作可能性进行了谈判。据悉,Adept已经和Meta进行过沟通。

Adept由OpenAI的原工程副总裁David Luan,与两位谷歌Transformer架构的提出者Ashish Vaswani和Niki Parmar联手创立。目前,Ashish Vaswani和Niki Parmar已经离开创立了另一家公司,Adept的三名联创只剩下华人David Luan一人。David Luan毕业于耶鲁大学,可以说是非典型意义上的连续创业者,中学时代、大学时期,都有相关的创业实践项目。

2023年3月,刚成立一年的Adept获得3.5亿美元融资,估值一举突破10亿美元,跻身生成式AI独角兽之列。目前Adept共斩获4轮融资,参投机构既有顶级风投Greylock,也包括微软、英伟达等著名科技公司;个人投资者则有LinkedIn联创Reid Hoffman、Uber CEO Dara Khosrowshahi、前特斯拉自动驾驶负责人Andrej Karpathy、Adobe首席产品官Scott Belsky等。

其推出的首个大模型产品ACT-1,不同于ChatGPT,可以基于用户指令分步骤操作电脑。今年1月,Adept还发布了多模态大型语言模型Fuyu-Heavy,可以回答问题并分析文本和图像。Adept还计划在今年夏天推出一款可以自动执行个人计算任务的Agent,但一些较大的现有企业也在开发这种服务。

2024年4月,Adept还登上了福布斯“AI 50强”排行榜,如今却走上了卖身之路。

成立一年,跻身独角兽

一家成立于2022年的初创公司,迅速在人工智能领域崭露头角,与核心团队的技术背景有直接关系。

Adept的创始团队由前OpenAI和谷歌AI开发人员共同创立。其中,Ashish Vaswani和Niki Parmar是谷歌Transformer架构的提出者,他们因共同发表《Attention Is All You Need》的论文而闻名。

另一位创始人兼CEO David Luan,也有谷歌的工作经历。2019年加入谷歌后,曾在研究部门担任技术主管,领导大模型项目。在此之前,他在OpenAI担任工程副总裁,参与了GPT-2和GPT-3的开发。

除此之外,David Luan的经历亮点还不少。6岁随家人从中国搬到美国,8岁开始学习大学课程,展现出“天才儿童”的特点,19岁便获得Thiel Fellowship奖学金——Thiel Fellowship是由硅谷亿万富翁、PayPal的创始人Peter Thiel设立的奖学金,专门选拔20岁以下创业青年人才。

当时,David Luan的学术与职业深受机器人技术的吸引。中学时代,他自主研发智能机器人控制系统,进入耶鲁大学后曾休学两年,投入到机器人应用商店项目的创建中。之后他的专业焦点转向深度学习,创办了一家专注于视频内容自动识别与场景分割的人工智能企业Dextro,最终被公共安全解决方案的上市公司Axon收购。

2022年底,Parmar和Vaswani离开Adept,成立另一家初创公司。因公司团队中不乏来自谷歌、DeepMind、OpenAI的资深专家,在David Luan的带领下继续推进其技术愿景,未受到显著影响。

Adept的核心目标是开发能够综合运用生成式AI技术的通用操作工具,即AI Agent,旨在通过语音或文本指令,使AI能够执行多样化任务,从而革新传统的软件操作模式。简而言之,Adept的目标是构建一个全新的操作系统或平台,让人们使用电脑更加“傻瓜式”,只需一个指令,其余所有步骤和事情它都可以帮忙完成,而非像ChatGPT那样一来一回的问答。

Adept的第一个产品名为Action Transformer(ACT-1)模型,可以深入理解人类与计算机的互动方式,其能力从解答基本问题逐渐扩展至执行更复杂的操作,比如,通过深入使用电子表格等工具,ACT-1可以从上下文中推断出人们的意思,并帮助人们完成后续的一系列操作。

2024年1月,Adept又发布了多模态大型语言模型Fuyu-Heavy,进一步提升了在文本和图像处理上的综合分析能力。据媒体报道,Adept还计划在今年夏天推出一款可以自动执行个人计算任务的Agent,不过,自1月发布Fuyu-Heavy后,公司X平台还无更新。

自2022年成立以来,Adept迅速获得了业界重量级人物及著名风投的财务支持。2022年1月成立后不久,就获得了包括LinkedIn创始人Reid Hoffman、特斯拉自动驾驶部门前负责人Andrej Karpathy等的投资。

2022年4月,Adept又获得了6500万美元的A轮融资,除前述轮次个人投资者继续跟投外,还吸引了风险投资基金Saam Motamedi、Skype早期开发者Jaan Tallinn、以及斯坦福大学计算机科学家、Lattice Data联合创始人Chris Ré等。

特别是2023年3月,Adept又筹集了两轮总计4.15亿美元的资金,参与方涵盖General Catalyst、Spark Capital、Greylock、Frontiers Capital等知名投资机构,以及微软、英伟达等行业巨头,使得Adept估值迅速攀升至10亿美元以上,正式迈入独角兽行列。

从辉煌到转折,AI独角兽的现实挑战

尽管融资历程和技术创新,表明了Adept在行业中一定的前瞻性,但最终踏上卖身的道路,或许揭示了深层次的困境。探究其背后原因,成本压力、激烈竞争及商业化路径不明朗是几个关键因素。

**首先,高昂的维护成本成为不可忽视的重负。**以ACT-1为例,“训练这样的模型并不便宜”,David Luan在福布斯的采访中坦承,目前仍处优化前阶段,他们追求的是开发更强大、多功能的模型,然后再逐步降低成本与规模。

**其次,市场环境的激烈竞争不容小觑。**Adept不仅要面对新兴企业的追赶,还得与科技巨头谷歌、微软和OpenAI等同台竞技,这些企业都在竞相开发能自动化日常办公任务的AI助手。

比如OpenAI正在秘密研发一种全新的智能体,它们能够利用计算机的强大功能,同时操作多个应用程序,实现如将文档中的数据自动传输到电子表格等高效任务。

Meta也在积极开发另一类智能体,目标直指高度自主规划能力,它们擅长处理复杂的多步骤任务,如跨国行程的全方位安排。

微软正在开发新的Agent来自动执行多种操作,比如根据客户的订单历史记录创建、发送和跟踪客户发票,或者用不同的语言重写应用程序的代码,并验证其是否按预期运行。

最后,Adept的商业模式初定于服务企业用户,但如何将技术优势转化为可持续的盈利模式,是其面临的又一大考验。目前还未见其商业化方向上的更多探索,想必存在一定困难。此外,两位联合创始人的出走,也引发了外界的一些猜测,如何稳固团队也是又一大考验。

或许还有最重要的一点,尽管AI Agent看似很火热,但尚处于早期探索阶段。本质上还是聊天机器人的变种,虽然能够处理特定任务,但往往并不具备执行多步骤任务的能力。根据开发者们的反馈,在实际操作层面,它们的表现往往喜忧参半,频繁陷入无尽的重复行为模式中。

当人们意识到智能体距离理想状态仍有漫长征途时,先前的热捧便不可避免地回归到了理性的冷静之中。

AI明星独角兽集体求卖身,洗牌开始了

AI独角兽求卖身的例子越来越多。

凭借创新AI硬件Pin闻名的Humane,如今也步入了寻求收购的行列。公司被爆在与一名财务顾问接触,寻找意向买家,目标价格是7.5-10亿美元。

AI Pin曾一度风靡,吸引了包括微软、高通,及OpenAI首席执行官山姆·奥特曼在内的多位重量级投资人的数亿资本注入。但因为定价过高,再加上电池寿命和产品过热等问题,推出之后少有人问津。

与此同时,Reka AI——这家由前谷歌杰出科学家Yi Tay一手创办的企业,也遭遇了收购谈判的挫败。Reka AI曾与数据仓储巨头Snowflake进行了一场10亿美元的收购谈判。然而,同Adept和Humane的结局相似,Reka AI与Snowflake的并购谈判最终未能达成一致。据传是因为Reka方面认为Snowflake的报价太低,从而导致交易无疾而终。

另外,最早一批AI独角兽,AI图片生成领域开拓者、Stable Diffusion打造者Stability AI,近期也传出了考虑求合并,但目前的具体进度还不得而知。

国内也有类似情况。去年有媒体爆出,一家清华系AI大模型公司,寻求10亿人民币估值融资的同时,也在以1亿美金的价格探索并购机会,当时同出清华一脉的智谱AI,曾就并购事宜接触过该团队。

现实也变得更严峻。GPT-4o并没有掀起太大的浪花,AI平台访问量停滞成既定事实,许多AI初创企业估值虚高是为共识,对盈利能力的追问也成为普遍质疑,同时,国内大厂的价格战打响,对中腰部以下企业更是冲击。

无论国内外,人工智能正步入一个全新的整合阶段。有行业观察指出,生成式AI领域的资金流向正展现出明显的战略调整迹象,资金逐渐向头部集中,而潜在投资者的兴趣更多地转向了应用层面的创新与发展。

在全球AI投资更谨慎、务实当下,未来一段时间内明星企业被卖身的传闻不会少,在市场变局中找到新归宿或不失为体面的退出,但前提是老股有人接,投资人懂得适时退。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值