月薪30K+的面试真题
范范:最近又在跳槽吗?
是的,最近有两家面试我觉得特别值得分享,入职薪资都在30K+,面试过程中对细节问的很深:
「大模型方向」
·模型微调:llamafactory如何做数据预处理、参数的设置、精度的选择、精度的选择会对损失造成什么影响、如果不用微调框架会不会写微调脚本?
·模型部署:Tensorrt 与 vLLM各自的优缺点;模型推理的参数有哪些,如何起作用?
**·召回怎么加速:**faiss、Milvus优缺点,为什么他们向量检索速度快,构建知识库的时候向量用不用做归一化、为什么?
「NLP方向」
**·NER:**数据的构造、都用过什么模型、有什么优缺点、训练的损失变化、优化如何做、推理后如何取到最后的结果?
**·关系抽取:**任务如何设计的,有没有做过联合任务的设计(实体识别+关系抽取)?
**·Trandformer:**架构细节,有没有自己用Transformer做过一些任务?
最大的感受就是,大模型处于上升期,工作机会也相对多一点,但好的岗位还需要真本事,细节一定要掌握。
工作没人带、网课学不会、能力不强的死循环
范****范:文科生走到这个地步已经很厉害啦!有什么建议可以分享吗?
我自己目前也是一塌糊涂,实在不敢说是建议,说说自己的辛酸血泪史吧哈哈。
2018年本科非科班出身(文科专业),学校也不好。刚开始是接触、学习人工智能,但只是找网上的代码跑通就行。
但是由于功底实在不扎实只能靠网课,学不会没法提升能力,找不到好工作,继续没人带,只能靠网课……这就无解了
范范:之前已经报过其他课程为什么还学不会?
很多课程价格很贵,但讲的很浅,照着PPT过一遍理论,调包实现一下各种任务就算实战了。总结下来是:
理论讲解千篇一律,听课跟自己在网上看帖子差不多,讲解既不深刻也不易懂。
代码直接找现成的进行跑通,没有太多关于代码细节的讲解,学完后依然没有动手能力。
老师讲课没激情,很难坚持听下去。
很多课买了没用,我就没看过。
范范:那九天老师的课为什么会不一样呢?广告时间了哈哈
哈哈哈,我先说些直观感受吧。
第一点是能听进去,九天、菜菜老师讲课的时候永远都是精神非常饱满、状态非常好,两三个小时的直播课状态始终如一。听着就是舒服,不会让人疲倦。
再有是能用的上,无论是我现在在做的O系列模型调研和使用,还是之前Agent相关内容,课程都给了我很大帮助。
最后是明显的提升,通过老师不断地带读源码,让我对看源码也有了一点感觉,很多时候在接触新框架的时也能自己先通过源码进行了解学习,这是我感觉进步最大的一点;
多实践才是硬道理
范范:如何做到了4个月完成转行?
我是24年初转入大模型赛道,个人觉得是运气好吧。因为知道自己的情况,所以一直抱着每次进步一点点的想法在前进,找到一份外包的工作就直接干了,26K也很满意。
范范:从文科转行到大模型,差距还是挺大的,是怎么想的?
我认为**大模型是处在上升阶段,而且是未来趋势。拥抱大模型应该是未来路最宽的选择之一。
**
至于坚持,其实挺现实的是能多赚钱哈哈~
而且做了技术就知道,只有不断学习才能跟上技术发展的速度,不被淘汰。
范范:当下认为什么比较重要呢?
我个人的话,认为最有效的是在打好基础的前提下多时间,基础任务应该多敲代码追求熟练。
我也是去年认识到这点后,开始追求对基础的学习与练习,感觉在学习模型架构、以及模型的训练优化等方面都有帮助,今年也会持续在这个方向努力。
范范:那对新人有什么建议吗?
实在不敢谈什么建议,非要说的话,只能说如果想要学习“深度学习/大模型”,选择赋范空间,跟着老师学,是走在正确的道路上,剩下的就要自己努力了。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。