OpenAI 说要封禁来自中国的流量,我笑了

大鱼最近有一些苦恼

这两年 AI 势头发展有些迅猛,大鱼所在公司是传统行业,他们的高管也想着用 AI 来降本增效,都说 ChatGPT 是 AI 的翘楚,于是高管决定先让员工从使用 ChatGPT 开始

但是直接用 ChatGPT 官网需要科学上网,有一定的门槛,高层决定部署一个面向用户的套壳 ChatGPT 网站试试水,通过调用 OpenAI api 来使用 ChatGPT

大鱼在 Github 上找到了一个套壳项目,很快把这个套壳网站给部署好了,但很快就发现了问题,因为国内直接调 ChatGPT 官网的 api 也是需要科学上网的,这样的话用户得科学上网才能访问 OpenAI 的 api,这与实际的需求不符(国内用户 99% 不懂科学上网)

在这里插入图片描述

眼看着交付日期临近,大鱼急忙向 CTO Tony 求助,Tony 听了大鱼的汇报,心平气和地说了一句话:大鱼啊,应该听过一句话,在计算机领域,没有什么是加一层解决不了的,如果有那就再加一层,你想想看,直连不行,能不能采用间接的方式来访问 OpenAI 呢,比如中间加一个代理?

在这里插入图片描述

大鱼恍然大悟,于是立即动手先在 vercel.com(可以简单理解为一个免费高效的 Web 应用部署平台)上部署了一个访问 OpenAI api 的应用,然后国内的请求先访问这个应用,应用再访问 OpenAI api,打算通过这样的方式来实现间接访问 OpenAI api 的效果

在这里插入图片描述

然而理想很丰满,现实很骨感,国内无法访问 vercel 上的应用

大鱼心想主要问题在于国内无法访问 vercel,那我是不是可以找一个代理服务器,只要国内能访问,它也能访问 OpenAI,不就行了,比如香港的服务器就满足需求,于是就把自己的想法给 Tony 提了一下

Tony 笑了一下:使用代理服务器确实可以,但其实国内也有办法访问 vercel 的,可以使用 CNAME 哦

「CNAME,这是啥,之前从未听说过呢」大鱼困惑道

Tony 看大鱼对 CNAME 确实一无所知,于是给他科普起了域名解析:

我们知道域名是为了方便人类记忆的,计算机只认 IP 的,任何一个域名都要被解析成 IP 地址才能访问,为了表示域名和其对应的 IP 的关系,我们在 DNS 后台可以填上一条记录来记录域名和 IP 的关系,如下:

example.com	record type	value	TTL
@	A	192.0.2.1	14400

我们把这样的域名与 IP 直接对应的记录称为 A 记录,上文中的 @ 表示解析主域名(example.com),这样 DNS 解析服务器就知道这个域名可以直接被解析成对应的 IP 了

理论上有了 A 记录域名解析就不成问题了,但 A 记录无法完美解决以下两个场景

一. 多个应用部署在同一台机器上的场景

多个应用部署在同一台机器( 同一个 IP),这种场景很常见,比如在机器上部署了多人应用,然后使用 Nginx 作为负载均衡器来转发部署在这台机器的其他应用

在这里插入图片描述

为了让 DNS 识别每一个域名对应的 IP(假设为 121.239.166.161),我们可以为每一个域名用 A 记录来记录一下

在这里插入图片描述

这么做确实也可以,但其实有一个很大的问题是,IP 可能会变的,假设你的服务从一个厂商迁到另一个厂商(比如从腾讯云迁移到阿里云),那么你的服务器 IP 就会发生变化,此时你需要一个个地去改 A 记录中每个域名对应的 IP,实在太过烦琐(几十个应用部署在同一台机器上对大厂而言很常见)

当然了如果你不嫌麻烦,这样确实也能达到目的,但有没有更优雅的方案呢?

计算机科学领域的任何问题都可以通过增加一个间接的中间层来解决,此时 CNAME 就发挥了作用,我们可以让这些域名都先解析到一个临时的域名(假设为 alias.com),然后再为这个 alias.com 域名配置一个 A 记录,这个 A 记录会记录 alias.com 对应的真正的 IP

这样的话 DNS 会先把应用的域名解析到 alias.com,然后再解析成 alias.com 对应的 IP

如果 IP 变了,只要改 alias.com 这一条 A 记录对应的 IP 地址就行了,实在是省事太多

在这里插入图片描述

对比原来的一个个改 A 记录无疑是一个巨大的进步

二. CDN 使用

如果说以上的这种场景你不嫌麻烦一个个为每个域名配置 A 记录的话也能达到解析访问域名的话,那接下来的这种场景不使用 CNAME 就无解了

现在很多云厂商都提供了 CDN 的功能,CDN 会将源站资源缓存到位于全国各地的CDN节点上,用户请求资源时,就近返回节点上缓存的资源,那么问题来了,如果我从杭州访问一个资源,假设为 https://b1.example.com/upload/avatar.png,那么 CDN 怎么知道我是从杭州访问的从而从杭州的 CDN 节点返回结果给我呢

如果你用 A 记录显示不合适,因为 A 记录是记录域名与 IP 的关系,无论你填哪个地区的 IP,DNS 都无法把就近的 IP 返回给你

此时 CNAME 就派上用场了,我用 CNAME 让 b1.example.com 指向一个 DNS 调度器,这样的话每次访问请求先打到这个调度器,然后再由节点调度器根据请求的 IP 来判断它来自哪个地区的

进而调度器就可以把离这个 IP 就近的 CDN 节点 IP 返回给请求方,然后就可以从这个就近的 CDN 节点拉取内容了,完整的 CDN 请求链路如下

在这里插入图片描述

「我明白了,原来 CNAME 起到了偷天换日的效果,但我还是不明白如何使用 CNAME 来达到让国内的用户访问 vercel 上的应用」大鱼疑惑道

「vercel 提供了一个域名 cname.vercel-dns.com.,这个域名是能被国内 DNS 解析的」Tony 会心一笑

听到这,大鱼恍然大悟,我可以为我访问的 api 域名配置一个 CNAME,填的就是 cname.vercel-dns.com.,然后就可以解析出 vercel 平台的对外 IP,拿到了 IP 一切就简单啦

在这里插入图片描述

搞完之后普通用户果然能访问 OpenAI api 啦

想起 OpenAI 之前宣布的将封禁中国的流量,大鱼会心一笑

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文转自 https://blog.csdn.net/weixin_58753619/article/details/140293673?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值