方向:大模型算法工程师
整个面试持续了1小时10分钟,能够看出面试官是典型搞技术的,问的很专业又很细,全程感觉压力好大,面完后感觉丝丝凉意,不过幸好还是成功拿下了Offer
一面:
自我介绍
简历项目深度交流
1.项目的背景是什么,主要解决了什么问题?2.训练数据集是如何构造的,都有什么类型的数据,总量有多大?
3.有没有进行微调?
4.解释-下 Prompt Tuning、Adapter Tuning、LORA 等微调方法的原理,分别适用于哪些场景?5.如何评估模型微调效果的好坏呢?
三、Tranformers和 Bert 相关,
1.介绍 transformer 网络结构
2.谈谈位置编码 ROPE
3.谈-谈对transformer的QKV的理解4.Self-Attention 的表达式5.Bert中为什么要在开头加个[CLS]?6.attention中的mask有什么用?(BERT中)
四、手撕代码:
统计岛屿数量:给你一个由’1’(陆地)和’0’(水)组成的的二维网格,请计算网格中岛屿的数量。
给定一个仅包含数字2-9的字符串,返回所有它能表示的字母组合。答案可以按任意顺序返回。
五、反问
这份《大模型算法岗常考面试题总结》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
这份《大模型算法岗常考面试题总结》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
本文转自 https://blog.csdn.net/2401_85328934/article/details/141952257?spm=1001.2014.3001.5501,如有侵权,请联系删除。