一文概览NLP算法(Python) 一、自然语言处理(NLP)简介 NLP,自然语言处理就是用计算机来分析和生成自然语言(文本、语音),目的是让人类可以用自然语言形式跟计算机系统进行人机交互,从而更便捷、有效地进行信息管理。NLP是人工智能领域历史较为悠久的领域,但由于语言的复杂性(语言表达多样性/歧义/模糊等等),如今的发展及收效相对缓慢。比尔·盖茨曾说过,"NLP是 AI 皇冠上的明珠。" 在光鲜绚丽的...
CV往哪卷?李飞飞指出三颗「北极星」:具身智能,视觉推理和场景理解 新智元报道编辑:LRS【导读】ImageNet见证了计算机视觉发展的辉煌历程,在部分任务性能已超越人类的情况下,计算机视觉的未来又该如何发展?李飞飞最近发文指了三个方向:具身智能,视觉推理和场景理解。在深度学习革命进程中,计算机视觉依托大规模数据集ImageNet,在图像分类、目标检测、图像生成等多个任务都表现出惊人的性能,甚至比人类的准确率还要高!但CV为何能取...
算法工程师是不是一个「越老越吃香」的岗位? 霍华德(向着成为人工智能训练大师前进)回答:是时候讨论一下越老越吃香这个话题了!越老越吃香第一定律:一个经验可以反复使用,反复创造价值,才有可能越老越吃香。如果你仔细思考所有职业所积累的经验,能符合越老越持续第一定律的职业其实非常稀少。医生和律师是其中最典型的两个。医生看病的经验,用到一个病人身上产生一次价值,而且随着经验增长,慢慢积累出看疑难杂症的能力,产生的价值进一步...
Prompt learning系列之入门篇 提纲1简介2NLP发展的四个阶段3Prompt learning4Prompt engineering5Answer engineering6Multi-prompt learning7Training strategy8总结参考文献1简介 Prompt learning作为近期NLP的新宠,热度不断攀升,在接下来的一段日子,大概率还是会处于一个风...
YOLO界再起波澜!mAP 51.4,149FPS,目标检测,一个就够了 机器之心发布作者:百度飞桨团队百度飞桨团队发布了 PP-YOLOE,与其他 YOLO 系列算法相比,其具有更强的性能、更丰富灵活的配置方案以及更全硬件支持三大优势。此前,机器之心报道过的 PaddleDetection 项目再次升级,发布了全新进化版 YOLO 模型——PP-YOLOE,并再次以极佳的性能表现刷新业界性能榜单指标,在目标检测领域引起了广泛关注。论文地址:...
GitHub获星3.4K,顶会SOTA算法开源,这个NLP项目价值百万! 大家好,我是Leo。AI领域的工作突破通常有三类:屠爆了学术界榜单,成为该领域学术层面的新SOTA实现了大一统,用一个架构实现对该领域诸多子任务的统一建模,刷新建模认知将NB的学术界新SOTA变成一件人人可傻瓜式使用的开源工具利器,带领该领域大规模落地开花要单独实现其中的任何一点,都是一件很有挑战的事情。如果我说,在信息抽取领域,不久前的一个工作同时做到了这三种突破呢?这...
被知网侵权长达13年!小说作家:一周前才知道 金磊 发自 凹非寺来源|量子位QbitAI一夜之间,知网“梅开二度”踏入公众视野。先是市场监管总局根据前期核查正式宣布:依法对知网涉嫌实施垄断行为立案调查。而随着这件事情的热度居高不下,此前自曝被知网侵权长达13年的作家陈渐也站了出来,接受凤凰网访谈,对自身的经历做了完整的描述。于是乎,这段访谈又一次让知网登上了热搜。“吃瓜吃到了自己头上”陈渐是北京知名作家,代表作...
李飞飞团队提出零样本泛化的技术,性能超越SOTA! 来源:迈微AI研习社没错!又是李飞飞!走在队伍前面的,是来自斯坦福大学的博士,李飞飞的门生!先来看看李飞飞团队这次在arXiv上发表了的论文题目:SECANT:用于视觉策略零样本泛化的自专家克隆废话少说,给大家介绍一下这篇论文的大致内容。论文介绍简要介绍强化学习中的泛化(generalization),是指通过不断跟环境交互,产生出一种网络的记忆性。这个网络能够根据环境中...
一文梳理深度学习算法演进 作者|Peter潘欣来源 |https://zhuanlan.zhihu.com/p/464515049编辑 |蘑菇先生学习记涉及语音、图像、nlp、强化学习、隐私保护、艺术创作、目标检测、医疗、压缩序列、推荐排序等方向。文章较长,耐心读完会有收获。1. 前言如果说高德纳的著作奠定了第一代计算机算法,那么传统机器学习则扩展出第二代,而近十年崛起的深度学习则是传统机...
Transformer里面的缓存机制 作者:刘绍孔(NLP算法工程师一枚)研究方向:机器翻译,文本生成Transformer是seq2seq模型,涉及encoder和decoder两部分。这里我们只关注attention的计算,encoder的每一层里面只有self-attention, decoder的每一层里面首先是self-attention,然后是cross-attention。Encoder部分相对...
关于神经网络,一个学术界搞错了很多年的问题 作者 | 五楼@知乎说一个近年来神经网络方面澄清的一个误解。BP算法自八十年代发明以来,一直是神经网络优化的最基本的方法。神经网络普遍都是很难优化的,尤其是当中间隐含层神经元的个数较多或者隐含层层数较多的时候。长期以来,人们普遍认为,这是因为较大的神经网络中包含很多局部极小值(local minima),使得算法容易陷入到其中某些点。这种看法持续二三十年,至少数万篇论文...
计算机视觉方向的博士,如何做到一直follow新技术? 提问背景我的情况:准博二,博一这一年做的是人脸方向的实验,刚写完一篇文章。现在停下来看,深度学习的新技术层出不穷,然而对于lstm、rnn、transformer我还是什么都不知道…这让我想到,大我好几届的师兄,在我已经能比较能看懂/修改/写深度学习代码的时候,他才慢慢开始意识到这个东西或许真的好用并真正去使用它(这个过程好像也过渡了两三年,师兄现在也已经变成讲师了)。我...
李沐「动手学深度学习」中文课程笔记来了!代码还有详细中文注释 来源:机器之心编辑:张倩markdown笔记与原课程视频一一对应,Jupyter代码均有详细中文注释,这份学习笔记值得收藏。去年年初,机器之心知识站上线了亚马逊资深首席科学家李沐博士的「动手学深度学习」中文系列课程。这门课从3月持续到8月,超过28000人参与了直播,课程回放在 B 站的播放量达到了上百万次。这门课程基于李沐等人编写的《动手学深度学习》第二版。《动手学深度...
北大韦神出手,一天解决了六博士四个月没搞定的难题 来源:机器之心编辑:泽南、蛋酱韦东奕:太简单了,没必要要钱。基础科学领域的研究总是让人感到晦涩难懂,但我们常常能从一些「小事」上看出其中意义。5 月 6 日,一张微信聊天截图,将北大助理教授韦东奕再次送上了热搜:图片来源:微博 @贼叉据这张截图介绍,一家科技公司使用 PS5 做了一个集群用来模拟产品的物理性能,但随着模型越复杂,模拟失真就越高。包含六位博士在内的团队花了四...
近年来,小样本学习取得重大进展了吗? 作者:ALme (电子科大 CS硕士在读)这两年看见很多人,包括我实习的mentor在内,都在批评few-shot learning,觉得是学术界在自high,思考良久,感觉有必要给这个领域正个名~(注意,此答案仅关注few-shot image classification)首先,要讨论few-shot learning的价值,咱得先把few-shot learning...
斯坦福教授曼宁AAAS特刊发文:大模型已成突破,展望通用人工智能 来源:机器之心编辑:泽南、小舟NLP 正在推动人工智能进入激动人心的新时代。当前人工智能领域热度最高的方向就是预训练大模型了,很多人相信,这项研究已在通用人工智能领域初显成效。自然语言处理领域著名学者,斯坦福大学教授克里斯托弗 · 曼宁(Christopher Manning)近期在美国人文与科学学院(AAAS)期刊的 AI & Society 特刊上发表了题为《...
FCN、Unet、Unet++:医学图像分割网络一览 计算机视觉|自然语言处理|机器学习|深度学习编者荐语文章首先厘清了语义分割、实例分割和全景分割等定义的区别。在此基础上,进一步分析了FCN、Unet、Unet++等算法在医学图像上的适用情况。作者丨Error@知乎地址丨https://zhuanlan.zhihu.com/p/159173338先上目录:相关知识点解释FCN 网络算法的理解Unet 网络算法的理解Une...
CVPR2022 有什么值得关注的论文 ? 作者:匿名用户观察近期CV论文产生的吐槽:1,主流任务卷不动,开始往偏门任务钻,没有也得硬造一个出来。2,打开论文,各种“may”"could"映入眼帘。经验学科坐实~3,故事讲得动听但仔细推敲会察觉逻辑性不足,比如之前比较流行的故事模板“受人类视觉系统(or脑科学)中的XXX机制启发..."4,只要刷点成功,就能证明方法有效,如果不服气,那就多刷几组呗。实验学科坐实~让...
Transformer论文引用破4万,两位作者离开谷歌创业 机器之心报道编辑:张倩「在谷歌,我们训练出了越来越大的 Transformer,梦想着有朝一日构建一个通用模型来支持所有 ML 用例。但是,这其中有一个明显的局限:用文本训练出的模型可以写出很棒的散文,但它们无法在数字世界中采取行动。你不能要求 GPT-3 给你订机票,给供应商开支票,或者进行科学实验。」在一场轰轰烈烈的「炼大模型」运动之后,全世界都在给这些模型寻找应用途...
时间序列预测一定需要深度学习模型吗? Datawhale干货作者:时序人,编辑:kaggle竞赛宝典时间序列预测一定需要深度学习模型吗?简介时间序列预测是机器学习中的一项常见的任务,具有非常广泛的应用,例如:电力能源、交通流量和空气质量等预测。传统的时间序列预测模型往往依赖于滚动平均、向量自回归和自回归综合移动平均。另一方面,最近有人提出了深度学习和矩阵分解模型来解决时间序列预测问题,并获得了更具竞争力的...