自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(392)
  • 收藏
  • 关注

原创 AI产品经理如何做好职业规划❓

是否懂 AI、是否懂产品经理,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。管理更复杂的产品或产品组合,具备较强的战略规划能力。根据个人情况和市场情况,设定短期和长期职业目标。深入理解AI技术,包括机器学习、深度学习、自然语言处理等。作为企业高层管理团队的一员,负责公司所有产品的愿景和战略。从用户角度出发,设计和优化产品,确保产品满足市场需求。通过课程、研讨会、行业会议等方式,不断更新知识和技能。负责整个产品部门,制定产品战略,领导团队。

2024-09-16 11:00:00 413

原创 速览多模态模型 Transfusion 和 Show-o:用 Transformer + 扩散模型同时处理文本和图像

此前多模态模型都只是强行把图像变成离散图像词元,再用标准自回归来生成图像词元。为了改进这些多模态模型,无独有偶,Transfusion 和 Show-o 都用到了更先进的图像生成技术。Show-o 将标准自回归改成了更强大的掩码自回归,而 Transfusion 激进地引入了完整的图像扩散模型,并把文本生成和图像生成当成两个相对独立的任务。二者的相同之处如下:两个多模态模型都用同一个 Transformer 来处理文本和图像。两个模型的 Transformer 都使用了同样的交叉注意力机制。

2024-09-15 09:00:00 572

原创 现在开始当AI产品经理锻炼这3个能力

最近听了@42章经历采访光年之外产品负责人张涛(hidecloud)的节目,他提出了ai产品应该具备的几种能力,我觉得道理浅,但属于实践出真知的范畴,因此,做一个记录,并加上自己的理解。

2024-09-14 09:53:49 1029

原创 如何让大模型更好地进行场景落地?

自ChatGPT模型问世后,在全球范围内掀起了AI新浪潮。有很多企业和高校也随之开源了一些效果优异的大模型,例如:Qwen系列模型、MiniCPM序列模型、Yi系列模型、ChatGLM系列模型、Llama系列模型、Baichuan系列模型、Deepseek系列模型、Moss模型等。图片来自:A Survey of Large Language Models并且在去年的一整年中,大多数人都在做底座通用大模型的搭建、垂直领域大模型预训练或微调等工作。

2024-09-13 10:58:16 1125

原创 面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述

自从首个全自动 AI 软件工程师 Devin 问世以来,面向软件工程的 AI 智能体广受关注、层出不穷,例如最近的 Genie、Replit、Cursor 等,它们正在对传统软件开发的范式产生着深刻影响。基于大模型的 AI 智能体(LLM-based Agents,后简称 Agent)通过增强推理、记忆、规划以及使用拓展工具的能力,极大地提升了大模型解决复杂软件开发维护任务的能力,为进一步实现自动化、智能化的软件开发提供了新思路。AI 智能体正在成为软件工程领域的研究新热潮。

2024-09-13 09:48:49 853

原创 大模型时代,算法工程师如何更有竞争了更吃香?

毫无疑问,全栈型的算法工程师将更为抢手,如果你精通大模型从训练到应用的整个流程,你走到哪里都不怕。但往往人的精力有限,如果从数据、预训练、微调、对齐、推理、应用几个方面来看的话,个人觉得现在重要性排序是“预训练>应用>数据>对齐>推理>微调”。

2024-09-12 10:47:43 1445

原创 OpenAI前研究科学家开源面向未来的提示工程库 ell,重新定义提示工程

ell通过将提示视为函数,并提供一系列强大的工具,重新定义了提示工程。它不仅简化了提示的创建和管理过程,还使得提示优化变得科学化和系统化。无论你是提示工程的新手还是经验丰富的专家,ell都能为你提供有价值的支持。

2024-09-12 09:44:30 912

原创 超全超详细大模型LLM技术点梳理

超全超详细大模型LLM技术点梳理,干货满满,内容有点多,大家可以先收藏保存

2024-09-11 11:03:52 907

原创 潘多拉的盒子还是阿拉丁的神灯:揭示RAG噪声在大语言模型中的作用

论文来自清华大学、北京国家信息科学与技术研究中心论文标题:Pandora’s Box or Aladdin’s Lamp: A Comprehensive Analysis Revealing the Role of RAG Noise in Large Language Models论文链接:https://arxiv.org/pdf/2408.13533检索增强生成(RAG)已成为解决大语言模型(LLM)中幻觉问题的关键方法。

2024-09-11 09:46:53 971

原创 AI产品经理转行的8个误区(避坑+正确路径)

我发现身边很多想转行做ai产品经理的朋友,都走了非常崎岖的一条道路!担心不懂技术,看了很多晦涩难懂的名词,但还是没办法几句话把原理讲清楚。大几千块买了课程学习了2个月,但还是不敢出去面试。根本抓不住面试要点,做了无用功,影响心态开始内耗。我经历过完整的转行,成功上岸,踩过很多坑,今天直播给小伙伴们讲了8个避坑指南,提供给大家正确的转行路径,希望大家少走弯路!!请相信你的焦虑可能正在被利用,做好自己能做的,有面试就全力准备,没面试就积极充实自己。AI不是个短期风口,机会还很多,让自己坚守在路上。

2024-09-10 10:45:11 735

原创 使用 LlamaIndex 进行 CRAG 开发用来强化检索增强生成

检索增强生成(RAG)彻底改变了使用大语言模型和利用外部知识库的方式。它允许模型从文档存储的相关索引数据中获取信息用以增强其生成的内容,使其更加准确和信息丰富。然而,RAG并非完全无缺。它有时会检索出不相关或不正确的信息,这就导致了不准确或带有明显误导性的生成内容。这就是 CRAG (修正型检索增强生成)发挥作用的地方。CRAG 是一种强大的技术,它通过结合反馈机制来改进检索过程,从而增强了 RAG 的鲁棒性。它确保生成中使用的信息既相关又准确,从而产生更可靠、更值得信赖的生成内容。

2024-09-10 10:00:58 755

原创 给参加大模型秋招和实习的同学一点建议

首先是方向性 ,现在大模型要求的方向都逐渐精细化,各大小厂要求的岗位也越加垂直。不再局限于CV,NLP,搜广推。比如CV方向,AIGC大模型相关的岗位会细分为文生图,图生图,文生视频,图像/视频编辑等。NLP方向大模型相关岗位又分为语音助手,问答系统,智能搜索,Langchain,提示工程师等而对于互联网大厂的大模型,会按照工种继续细分,比如大模型算法开发,大模型平台开发,模型加速,模型训练,模型部署。因此第一点,大家在准备的时候,一定要找准适合自己的方向,精准投递,提高简历筛选通过率。

2024-09-09 10:44:37 1107

原创 挑战当前最难、规模最大多模态评测基准MME-RealWorld,QwenVL-2位列第一但并未及格

本文提出了 MME-RealWorld 基准测试,旨在解决现有 MLLM 评估中的关键局限性,如数据规模、标注质量和任务难度。作为迄今为止最大、分辨率最高的纯人工标注数据集,MME-RealWorld 得益于 32 名标注者的参与,确保了高质量数据和最小的个人偏差。大多数 QA 对都集中在自动驾驶和视频监控等现实世界场景上,这些场景具有重要的适用性。

2024-09-09 09:47:50 860

原创 豆瓣评分9.0!AI大模型时代利器:LangChain入门指南

2023年,LLM(大语言模型)井喷式爆发,尤其是GPT-4问世,一石激起千层浪,影响了整个人工智能领域,每个开发者都被“裹挟”着进入了 LLM 应用开发时代。在这样的大背景下,LangChain 这个以 LLM 为核心的开发框架应运而生,进一步推动了这一领域的创新和发展。LangChain 不仅可以用于开发聊天机器人,还能构建智能问答系统等多种应用,这马上引起了广大技术爱好者和开发者的关注。

2024-09-08 14:00:00 357

原创 对齐LLM偏好的直接偏好优化方法:DPO、IPO、KTO

(例如,在聊天UI中看到的👍或👎图标)。这些标签在实践中更容易获取,KTO是持续更新生产环境中运行的聊天模型的一个有前景的方法。同时,这些方法伴随着超参数,最重要的是β(beta),它控制了参考模型偏好的权重。通过像🤗 TRL这样的库,这些替代方案现在可供实践者使用。一个自然的问题是,这些方法和超参数中哪一个能产生最好的聊天模型?这篇文章旨在通过实证分析这三种方法来回答这个问题。

2024-09-07 10:00:00 696

原创 C端产品如何转行成为大模型产品经理?

大模型是一个涉及伦理和社会的领域,需要有高度的责任感和良知,遵守相关的法律和规范,防止大模型的滥用和误用,保护用户的隐私和安全,促进社会的公平和进步,构建通用的大模型平台,提供各种大模型的训练、部署、调用、管理等服务,满足不同行业和场景的需求,成为大模型的基础设施和中间件的提供者。搭建开放的大模型生态,吸引和培育各种大模型的开发者和应用者,形成良好的社区和市场,成为大模型的创新和推广的平台和引领者。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2024-09-06 11:14:57 1263

原创 LLM 进化分岔口:多模态、成本、代码推理

头部模型的新一代模型的是市场观测、理解 LLM 走向的风向标。即将发布的 OpenAI GPT-Next 和 Anthropic Claude 3.5 Opus 无疑是 AGI 下半场最关键的事件。本篇研究是拾象团队对 OpenAI 和 Anthropic 在 2024 年至今重要技术动作、产品投入、团队变化的总结和分析,我们希望从这些关键细节来理解头部模型公司的核心主线,更深入地把握 LLM 的进化方向。

2024-09-06 11:09:16 1864

原创 模型大师们!答应我把这8本书翻烂好嘛?

模型大师们,准备好踏上一段深度学习与模型构建的路了吗?这里有八本经典之作,它们将是你攀登知识高峰的阶梯!从《PyTorch深度学习实战》到《大模型时代》从掌握基础框架到洞悉大模型时代的变革模型大师,准备好了吗?翻烂这八本书,直接嘎嘎冲!!

2024-09-05 11:08:53 969

原创 揭秘AI数字人:RAG技术如何重塑数字人交互新纪元(一)

大家好,今天我想与大家。作为一名深度参与数字人项目的从业者,我有幸见证了这一领域的快速发展和无限潜力。在数字人的世界里,我们不仅探索着大语言模型的奥秘,还深入研究RAG(Retrieval-Augmented Generation)技术以及多模态交互的奇妙。未来,我期待有机会逐一为大家揭开这些技术的神秘面纱。特别值得一提的是,在数字人的文案创作和互动问答场景中,RAG技术的应用尤为关键,这正是我之前多次提及的。今天,就让我们从这里开始,先来一步步了解一下数字人的精彩世界。

2024-09-05 09:51:47 762

原创 RAG新范式MemLong:用于长文本生成的记忆增强检索

传统的注意力机制由于时间和空间复杂度的二次方增长,以及在生成过程中键值缓存的内存消耗不断增加,限制了模型处理长文本的能力。相关的解决方案包括减少和语言建模。。(a) 当检索到的信息长度超过模型的处理能力时,RAG甚至可能会降低生成性能(黄色)(b)利用外部检索器来获取历史信息,然后将这些信息以键值对(K-V)的形式而不是文本形式传递给模型。提出一种新方案,结合一个非可微分的检索-记忆模块和一个部分可训练的解码器语言模型,来增强长文本上下文的语言建模能力。

2024-09-04 10:05:11 745

原创 终于知道如何简化时间序列的特征工程了!

在处理时间序列数据时,时间特征往往是最基础且独特的要素,我们的目标通常是预测某种未来的响应或结果。不过在很多情况下,除了时间特征之外,我们还能获取到一系列其他相关的特征或变量。时间序列数据中的特征工程涉及从原始时间序列数据中创建信息丰富的特征,以提升机器学习模型的性能。这些特征是从日期时间列中提取的,如月份、日期、星期几、小时等。在时间序列中,这些特征可能包含有助于机器学习算法学习的某种影响或模式。滞后特征涉及使用时间序列的过去值作为特征。

2024-09-04 10:03:19 918

原创 2024爆火全网大模型书籍:《从零构建大型语言模型》星标17.8k

近期,机器学习和 AI 研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又写了一本新书 ——《Build a Large Language Model (From Scratch)》,旨在讲解从头开始构建大型语言模型的整个过程,包括如何创建、训练和调整大型语言模型。这本书的名字叫也就是。

2024-09-03 10:29:35 783

原创 360提出冻结语言模型训练LMM新范式,无损获取多模态理解与Grounding能力 谢春宇,王斌 PaperWeekly 2024年09月01日 23:58

当前广泛流行的基于 LLaVA 结构的多模态大语言模型(LMM: Large Multimodal Model)在视觉任务上表现出色,然而因为训练中需要对内嵌的语言模型进行微调,常常会显著削弱其在自然语言任务(NLP)上的能力,具体来说,模型对文本的整体理解能力会减弱,而且在回答问题时给出的信息也不够详细。为了防止这种性能退化,一个行之有效的办法是在扩展模型的多模态能力时,不改变语言模型的原始参数。不过,先前像 Flamingo 和BLIP2 这样的尝试,并没有达到预期的效果。

2024-09-02 10:26:16 466

原创 Decoder-only的LLM为什么需要位置编码?

众所周知,目前主流的 LLM,都是基于 Causal Attention 的 Decoder-only 模型,而对于 Causal Attention,已经有不少工作表明它不需要额外的位置编码(简称 NoPE)就可以取得非平凡的结果。然而,事实是主流的 Decoder-only LLM 都还是加上了额外的位置编码,比如 RoPE、ALIBI 等。那么问题就来了:明明说了不加位置编码也可以,为什么主流的 LLM 反而都加上了呢?不是说“多一事不如少一事”吗?

2024-09-02 10:23:51 955

原创 写给LLM新手的建议,让你少走2年弯路!

大模型的爆火,在全球范围内引发了一场A1“狂也在业界点燃了一场百模大战。结合蕞近飙”,两年我在大模型领域的一些经验,分享一下在校学生/新人如何转到大模型阵营。

2024-08-31 20:00:35 1517

原创 从AI助手到自主Agent场景分析:项目经理如何选择最适合的LLM策略?

在项目实施过程中,选择适合的LLM应用模式需要基于具体的业务需求、AI的能力、团队的合作方式以及对AI结果的可控性进行权衡。通过这篇文章,项目管理者可以清晰地识别不同应用模式的优缺点,并根据项目的复杂度、AI能力需求以及团队合作的特点选择最合适的模式。因此,在实施AI Agent模式时,团队需要对AI的自主能力有充分信任,并能够设计合理的监督机制以确保AI的表现符合预期。AI Agent模式则适合那些需要高度自动化和AI自主执行的项目,适用于复杂且重复性的工作流程,能够大幅度减少人类的干预。

2024-08-31 19:53:13 1040

原创 这么多优秀的 AI 大模型,我应该选择哪个呢?

前两次,我们向大家介绍了当前全球最有名的总共 11 个 AI 大模型。在此期间,openAI 于 8月 6 日 最新推出另了一个超强 AI 大模型 —— GPT-4o(Aug 6),强势跻入全球前列。不得不说,这才多久,openAI,谷歌,Meta 等大厂对于大模型就发生了无数次的更新,每次更新,都是让人大呼哇塞!全球领先真是当之无愧啊。那么,面对这么多优秀的 AI 大模型,他们之间到底谁最优秀呢?如果要选择一款适合我们团队的大模型,我应该选择哪个呢?

2024-08-30 19:38:44 922

原创 如何让大模型输出 10k+字长文?

随着大语言模型的发展,许多模型已经能够处理超过100k+ tokens的输入上下文。然而,这些模型在生成长文本时,普遍存在输出长度受限的问题。在实际应用中,为了克服这个问题,人们普遍采用「分而治之」的方法,让模型一段一段地写。这种方法在一定程度上似乎能够解决长文本输出的问题,但往往会导致 1)消耗 tokens 量成倍甚至指数增加;2)前后内容不连贯。如何才能让模型拥有更强的长文本输出能力呢?我们发现,模型输出长度受限的主要原因在于,监督微调(SFT)数据集缺乏足够长的输出样例。

2024-08-30 19:37:06 743

原创 人到中年,成功转行大模型提示词工程师?教你18个月转行

人到中年,想半路出家转行成Prompt提示词工程师,可行吗?最近,这位成功转行的国外小哥用一篇干货满满的硬核博客告诉我们:完全可以!转行成为一名rompt提示词工程师,可行吗?国外一位成功转行的Max Mynter告诉我们——完全可以!收到了多条X私信后,他决定把自己的成功经验写下来。他强调说:我不是Karpathy,但我可以算一名扎实的中级Prompt提示词工程师。他是通过刻意的努力,才成为一名工程师的。而且,就是在最近,他刚刚从业余爱好者转成了一名专业人士。

2024-08-29 10:41:23 1172

原创 一文教你编写有效提示词,了解常用提示词工具—Prompt Engineering for Gen AI

树状思维方法建立在链式思维方法之上,通过层次化的提示结构引导模型的推理和生成输出。它特别有用于需要明确指令或约束时,能够让模型同时探索各种可能性和想法,如同决策树一样分支展开。

2024-08-29 10:23:39 688

原创 全网爆火的第一本程序员的Agent入门书籍——《大模型应用开发 动手做AI Agent》

这本书一共9章,涉及到基础理论、Agent 框架、Multi-Agent、代码实战等丰富内容,整本书更偏向教程实战,就像书名所说的,相当一部分都是代码教学而非枯燥的理论研究,我认为即使是代码小白,也能跟着步骤一步一步用代码实现一个 Agent!书中既介绍了 ReAct、LangChain 等经典框架,也涉及了爆火的 AutoGPT、Camel 等,还有 AutoGen、MetaGPT 这样的多智能体框架,还是非常惊喜的!

2024-08-28 10:38:21 1095

原创 AI数学基础动画讲解 - 线性代数(线性变换)

线性代数中的线性变换是一个核心概念,它描述了一种从向量空间到另一个向量空间的特殊映射,同时保持向量加法和数量乘法的运算性质。在这里插入代码片线性(Linear)加法的齐次性(Additivity)、标量乘法的齐次性(Scalar)加法的齐次性(Additivity):对于任意的向量u和v以及任意的标量k,线性变换T标量乘法的齐次性(Scaling):对于任意的向量u和任意的标量k,线性变换T原始向量【-1, 2】经过线性变换矩阵 [[1, 3], [-2, 0]] 后,变为了新的向量 【5, 2】

2024-08-28 10:25:23 884

原创 AI数学基础动画讲解 - 线性代数(向量空间)

线性代数(向量空间)向量空间: 向量空间,又称线性空间,是线性代数的中心内容和基本概念之一。向量空间定义为带有加法和标量乘法的集合V。具体来说,向量空间中的元素称为向量,这些向量之间定义了加法和标量乘法两种运算,并满足一系列公理。线性代数(向量空间)向量空间的公理详细列出如下:符号表示:对于任意u, v ∈ V,u + v ∈ V。数学表达式:(u + v) + w = u + (v + w)。数学表达式:u + v = v + u。数学表达式:对于任意向量u,u + 0 = u。数学表达式:对于任意向量u

2024-08-28 10:21:40 1066

原创 从0开始构建LLM应用程序,超详细分步指南!

大型语言模型(LLM)正迅速成为现代人工智能的基石。然而,目前尚未有既定的最佳实践,所以研究者们没有明确的路线图可遵循,经常陷入困境需要重新开始。在过去两年里,我帮助多个组织利用LLM构建创新应用。通过这段经历,我开发出了一种久经考验的方法来创建创新解决方案(受LLM.org.il社区的见解影响而形成),我将在本文中分享这个方法。本指南为在复杂的LLM原生开发环境中导航提供了清晰的路线图。您将了解如何从构思转到实验、评估和产品化,释放您创造开创性应用的潜力。

2024-08-27 10:25:43 1408

原创 AI数学基础动画讲解 - 线性代数(向量)

在人工智能(AI)领域中,向量(Vectors)扮演着至关重要的角色数据表示:在机器学习和深度学习中,数据通常以向量的形式表示。例如,一个图像可以被转换为一个像素值向量,一个文本文档可以被转换为一个词向量。特征工程:特征工程是机器学习中的一个关键步骤,它涉及从原始数据中提取有意义的特征。这些特征通常以向量的形式表示,并作为机器学习模型的输入。线性代数:线性代数是机器学习和深度学习的数学基础,而向量是线性代数的基本元素。诸如矩阵乘法、点积、范数等运算在AI算法中非常常见,它们都是基于向量的操作。

2024-08-27 10:15:10 753

原创 神经网络动画讲解 - 构建灵活可调节参数

无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2024-08-27 10:11:53 632

原创 2024死磕AI大模型,一定能赚到钱!

无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2024-08-26 10:06:29 314

原创 神经网络动画讲解 - 神经网络模型训练

参数初始化:神经网络的参数(包括权重和偏置)在训练开始前会被随机初始化。前向传播:在训练过程中,输入数据通过神经网络进行前向传播,计算出模型的输出。这个过程涉及将输入数据与每一层的权重和偏置进行线性组合,然后应用激活函数来引入非线性。反向传播:利用反向传播算法来计算损失函数相对于模型参数的梯度。这个过程涉及从输出层开始,逐层计算损失对参数的偏导数,并将这些梯度信息从输出层传播回输入层。参数更新:得到梯度后,使用优化算法(如随机梯度下降SGD、Adam、RMSprop等)来更新模型的参数。

2024-08-26 10:02:35 1034

原创 神经网络动画讲解 - 权重W、偏置b和激活函数

在神经网络中,权重(W)和偏置(b)是两个非常重要的参数,它们决定了神经元之间的连接强度和神经元的输出。权重(W):权重是神经网络中的连接参数,用于描述不同神经元之间的连接强度。在神经网络的前向传播过程中,输入数据会与权重进行加权求和,从而影响神经元的输出。权重的大小和正负决定了输入数据对输出数据的影响程度。偏置(b):偏置是神经网络中的一个附加参数,用于调整神经元的输出。偏置的作用类似于线性方程中的截距项,它使得神经元的输出可以偏离原点。偏置的存在使得神经网络能够学习更加复杂的函数关系。

2024-08-26 09:57:51 687

原创 第一次get到学习大模型的沉浸感和成就感 ,大模型入门必看!!<大模型应用开发极简入门>(PDF分享)

人工智能大潮已来,不加入就可能被淘汰。就好像现在职场里谁不会用PPT和excel一样,基本上你见不到。而大模型是人工智能代表,潜力与使用方式有关。使用好大模型可提高效率,让人获得更好的待遇和更多机会。所以今天给大家推荐一本大模型方面的书籍你发现PPT和excel用的好的PPT一看就惊艳,excel用的特别熟练,你这个数据分析用的非常的到位,你的待遇会远远高于那些用的不好的。差距非常明显,有人就可一人干两人活,那待遇肯定远高于能保持原效率的人。

2024-08-24 10:25:20 447

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除