自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(736)
  • 收藏
  • 关注

原创 跪着读完了Google新发布的AI Agent白皮书(附中英文)

Google最新发布《AI Agent白皮书》详解生成式AI核心技术,揭示未来智能生活图景。白皮书重点解析了AI Agent的ReAct工作机制、三大工具支持(Extensions、Functions、Data Stores)及其在智能家居、办公自动化等场景的应用潜力。该技术通过四步交互序列实现复杂任务处理,能动态接入外部API并实时处理数据。对于CS从业者而言,这份资料不仅呈现了AI架构设计的前沿思路,更为科技求职者提供了重要的知识储备。白皮书现已开放中英文版本下载,包含完整的大模型学习资料。

2025-09-22 14:34:31 261

原创 大模型应用开发入门到进阶学习指南:从零基础到实战落地的保姆级教程

2025年,大模型(Large Language Models, LLM)已不再是科技巨头的专属玩具,而是逐步渗透到企业服务、金融、医疗、教育等各行各业的核心系统中。越来越多的开发者意识到:掌握大模型应用开发能力,已成为职业跃迁的关键跳板。但面对海量信息,许多初学者陷入迷茫:该从哪里开始?学什么框架?需要懂算法吗?如何做出真实项目?别担心。本文将为你梳理一条清晰、高效、可执行的大模型应用开发学习路径,覆盖从入门到进阶的完整知识体系,结合真实工具链和工程实践,助你少走弯路,快速上手。

2025-09-11 14:02:23 623

原创 全网爆火神书《从零构建大模型》终于有中文版的啦!LLM大模型神仙入门书籍教程分享!_从零构建大语言模型(中文版)

《从零构建大模型》中文版正式发布,该书由威斯康星大学麦迪逊分校终身教授编写,使用PyTorch框架详细讲解大模型构建全过程。全书分为六个部分,涵盖大模型基础知识、文本数据处理、注意力机制实现、GPT模型构建、无标签数据预训练及模型微调等内容。书中配有清晰图表和代码示例,所有操作均可通过笔记本电脑完成。配套项目实战及完整代码已整理,读者可免费获取中文版PDF及大模型学习资料。该书适合希望深入理解大模型原理并动手实践的开发者。

2025-09-11 13:43:12 409

原创 基于LangChain的AI Agent智能体:技术原理、开发实践与未来展望_langchain 智能体

人机协同与AI Agent技术发展 文章探讨了生成式AI发展下的人机协同三种模式:嵌入模式(AI作为工具)、副驾驶模式(人机合作)和智能体模式(AI自主行动)。重点分析了AI Agent的基本框架,包括记忆、规划、工具使用和行动四大模块。文章还介绍了垂直领域AI Agent的实现路径,涉及LangChain框架的功能和组件,以及思维链(Chain of Thought)技术在提升大模型推理能力中的应用。这些技术发展正在改变人机协同方式,推动更深入的人机融合。

2025-09-11 11:57:37 1075

原创 一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析_rag function call

大语言模型(LLM)虽能力强大,但存在与真实世界脱节的问题。为解决这一局限,业界提出了四大关键技术: Function Call:让LLM通过调用外部工具执行实时任务,如查询天气、订票等。 RAG:通过检索外部知识库增强回答准确性,避免“幻觉”,适用于专业领域查询。 Agent:以LLM为核心,自主规划任务并协调工具(如RAG、Function Call)完成复杂操作。 MCP:标准化协议,统一AI与外部工具的交互接口,提升兼容性和效率。 这些技术协同作用,使AI从“理论派”升级为“实干家”,逐步实现与现实

2025-09-11 11:54:37 894

原创 数据说话:Java开发者转型AI大模型应用工程师的黄金时机已至!

在2025年的今天,人工智能已不再是实验室里的“黑科技”,而是深刻重塑各行各业的核心驱动力。尤其在大模型(LLM)技术爆发式发展的背景下,企业对具备AI应用能力的工程师需求激增。而在这场技术浪潮中,一个被严重低估的群体——Java开发者,正迎来前所未有的转型黄金期。这不是空谈趋势,而是由真实数据和市场需求共同验证的结论。如果你是一名Java工程师,现在正是你转型为AI大模型应用工程师的最佳时机。

2025-09-11 11:50:25 1121

原创 LLaMa系列模型详解(原理介绍、代码解读):LLaMa_llama模型

Meta推出的LLaMA(Large Language Model Meta AI)是基于Transformer架构的大规模语言模型,在NLP任务中表现优异。其核心创新在于:1)采用预标准化和RMSNorm归一化技术提升训练稳定性;2)使用SwiGLU激活函数增强模型性能;3)引入旋转位置嵌入(RoPE)替代传统位置编码。不同于追求最大模型规模,LLaMA通过在更多数据上训练较小模型来实现最佳性能。该模型通过RMSNorm计算均方根归一化、SwiGLU结合Swish和门控机制等优化,显著提升了语言处理能力。

2025-09-05 11:22:42 706

原创 深度解读 LLaMA:大模型的核心架构

LLaMA模型作为Decoder-only架构的重要代表,在Transformer基础上进行了多项关键改进:1)采用Pre-norm结构和RMSNorm归一化提升训练稳定性;2)使用SwiGLU激活函数优化FFN层性能;3)引入旋转位置编码RoPE增强位置感知能力。这些创新使LLaMA在模型深度(7B-65B参数规模)和训练效率上取得突破,成为后续大模型(如Qwen等)的参考范式。文章详细解析了LLaMA的核心技术演进,包括归一化策略调整、激活函数选择和位置编码优化,系统阐述了其在现代大模型发展中的技术贡献

2025-09-05 11:20:47 1044

原创 三天背完大模型面试八股文,通过率99%!

2025年AI大模型面试常见问题涵盖基础知识、训练过程和应用场景。主流大模型包括GPT系列、BERT、XLNet等,基于Transformer架构,具有强大的语言理解和生成能力。训练过程通常分为预训练(大规模数据学习)和微调(特定任务优化)两个阶段。典型应用包括文本创作、语言翻译、文本摘要和智能问答等任务。这些模型通过海量数据训练获得广泛知识,并能在不同领域进行针对性优化。

2025-09-05 11:17:15 915

原创 Transformer中的位置编码:绝对位置编码、相对位置编码与旋转位置编码_transformer位置编码

本文系统介绍了Transformer模型中三种主要位置编码方法:绝对位置编码、相对位置编码和旋转位置编码。绝对位置编码通过正弦余弦函数为序列每个位置生成固定向量,实现简单但长距离依赖表现有限;相对位置编码则关注元素间距离关系,更适合处理长序列任务;旋转位置编码通过旋转操作将位置信息融入注意力计算。文章以"我爱你,中国。"为例,结合代码展示了不同编码的实现方式,并分析了各自的优缺点。这些方法为Transformer模型处理序列顺序信息提供了关键支持,影响着模型对文本结构的理解能力。

2025-08-29 17:59:16 854

原创 教你如何使用 ollama 部署本地模型,保姆及教程,一看就会!

Ollama是一个可以在本地运行大型语言模型的工具,支持Llama 2、Code Llama等模型。它允许用户通过终端直接与大模型对话,并提供模型管理功能。Ollama适合初学者在本地安全地体验大模型,硬件要求较低但需要足够存储空间。安装后可通过命令运行模型,还支持Web API访问。社区提供了Open WebUI项目,可通过Docker部署,提供更友好的图形界面操作体验。

2025-08-29 17:57:27 823

原创 AI产品经理入门必修课:掌握这5大核心能力,快速上手

一、大模型产品经理的定义与核心职责大模型产品经理是专注于规划、设计和优化基于大模型(如GPT、BERT、盘古等)的AI产品的角色。他们需要将复杂的AI技术与实际业务场景结合,推动产品落地并实现商业化价值。核心职责包括:技术理解与需求转化:理解大模型的原理(如Transformer架构、预训练与微调机制等),将业务需求转化为技术方案;产品设计与迭代:设计用户体验,优化模型效果,协调技术团队实现产品功能;数据与场景洞察:分析用户需求,挖掘适合大模型的应用场景(如金融风险评估、医疗诊断辅助等),并通过数

2025-08-29 17:48:43 822

原创 一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型_anythingllm和webui哪个更好

摘要: 本文介绍了当前热门的本地大模型知识库工具,分为知识库侧和大模型侧两类。知识库侧工具包括AnythingLLM、MaxKB、RAGFlow、FastGPT、Dify和Open WebUI,支持文档处理、向量化检索及本地RAG等功能,适用于企业级知识管理。大模型侧工具如Ollama、LM Studio等简化了本地大模型的部署与管理。这些工具在数据安全、多模态支持和可视化操作方面表现突出,为开发者及企业提供了高效、灵活的AI解决方案。

2025-08-21 15:08:34 992

原创 【AI】DeepSeek+Dify构建知识库、Agent(智能体)、工作流、聊天助手_dify 知识库

本文介绍了如何利用DeepSeek和Dify平台构建个性化AI助手。DeepSeek凭借其推理模型优势,能深度理解用户需求,为股票分析、业务升级等场景提供智能支持。Dify是一个无需编程的AI工具平台,支持创建聊天助手、工作流和知识库。文章重点演示了知识库的创建过程,包括文本导入、分段处理以及三种检索方式(向量/全文/混合)的效果对比,为个人和企业利用AI提升效率提供了实用指南。文末还提供了预装环境的虚拟机镜像下载链接。

2025-08-21 15:06:50 759

原创 十本大模型学习必备书籍,自学大模型,一般人我劝你还是算了吧_大模型书籍_《大模型原理与实践》

这篇推荐书单精选了10本学习大模型的权威书籍,涵盖从理论到实践的完整知识体系。核心推荐包括:杨青《大语言模型:原理与工程实践》全面讲解技术原理与代码实践;复旦团队《大规模语言模型》系统介绍预训练等关键技术;卡埃朗《大模型应用开发极简入门》聚焦GPT-4应用开发实战。书单包含入门到进阶不同层次,既有人工智能基础理论,也有Python编程、模型优化等专项内容,适合学生、研究人员和工程师。所有推荐书籍均提供详细内容介绍、适合人群和推荐理由,并附有免费电子版获取方式,为读者构建系统化的大模型学习路径。

2025-08-21 14:48:18 679

原创 开启RAG进阶:混合检索(关键字&向量)+重排序(原理讲解与示例体验)

本文探讨了混合检索技术在RAG系统中的优势与应用。混合检索结合了关键字检索(稀疏表示)和向量检索(稠密表示)两种方法,通过加权参数alpha(0-1之间)调整两者的比重,显著提升了搜索结果的准确性和召回率。文章通过Python代码示例展示了如何实现基于RRF(互惠排名融合)的混合排序,并在医学案例中验证了其有效性:相比单一检索方式,混合检索能更准确地识别出"非小细胞肺癌"相关文档。实验证明该方法能有效融合关键词的精确匹配和向量检索的语义理解优势。

2025-08-14 15:53:48 858

原创 AI大模型是如何测试效果的?_ai大模型测试怎么测

AI大模型测试评估涉及多个维度,主要包括:基准测试(如GLUE、SQuAD等标准数据集)、多样性与覆盖性测试(验证多任务处理能力)、鲁棒性测试(抗干扰能力)、效率测试(资源占用与扩展性)以及实际应用测试(真实场景表现)。根据清华SuperBench评测,国际模型如GPT-4和Claude-3在语义理解和代码能力领先,国内模型GLM-4、文心一言4.0等逐渐缩小差距,但在代码和智能体能力上仍需突破。测试方法包括零样本CoT评分和代码通过率评估,结果显示大模型在数学和代码生成任务上仍有提升空间。

2025-08-14 15:51:23 942

原创 大模型工程师速成指南:9周实现职业飞跃

本文介绍了一套9周成为大模型工程师的系统学习方案。课程内容涵盖大模型基础知识、数据处理与训练、模型架构、预训练与微调、推理优化、应用开发、安全评估等核心模块,最终完成行业实战与前沿技术探索。学习路径包括7个阶段:从系统设计、提示词工程到平台应用开发、知识库构建、微调开发以及多模态应用,并提供丰富的学习资源包(书籍、报告、视频等)。通过该课程,学员可掌握大模型全栈开发能力,完成垂直领域模型训练,并获取包括学习路线图、商业方案等在内的全套资源包。

2025-08-14 15:31:00 1047

原创 8年JAVA程序员逆袭转AI之路!成功拿下offer,我的真实经历分享

大家好,我是一名拥有8年Java开发经验的程序员,曾做过后端开发、架构设计、微服务优化,也带过团队、写过业务、修过无数的bug。但就在今年,我做了一个重大决定:从零开始转行AI大模型方向,并成功拿下AI方向的offer。这篇文章,我会从“为什么转行、转行的优势、转行前需要做哪些准备、需要学什么、怎么转行”这几个维度,详细分享我的转型之路,希望能给正在考虑转行AI的你一些启发和方向。

2025-07-22 13:57:46 1274

原创 简单三步,在家轻松创建个人AI知识库,非常详细收藏我这一篇就够了_openwebui 知识库

本文介绍了如何在本地部署大模型及搭建个人知识库,主要使用Ollama、Open WebUI、Docker和AnythingLLM等工具。首先指导读者安装Ollama并运行Llama2等本地大模型,随后通过Docker部署Open WebUI实现可视化交互界面,支持对话和基于文档的RAG功能。文章还简要说明了RAG技术原理及本地知识库搭建方法,帮助用户理解大模型运行机制,并实现完全本地化的AI应用部署。

2025-07-22 11:55:04 1112

原创 ollama+deepseek+AnythingLLM部署个人知识库完整分享,收藏这一篇就够了!!

本文介绍了在Windows环境下搭建本地大语言模型(LLM)系统的完整流程,主要涉及Ollama、DeepSeek和AnythingLLM三个工具的部署与集成。Ollama作为本地运行框架,DeepSeek提供预训练模型,AnythingLLM则提供交互界面。文章详细说明了硬件要求(建议4核CPU/16GB内存/50GB存储)、软件安装步骤、模型下载方法,并展示了如何通过AnythingLLM构建带有知识库的问答系统。此外,文章还提供了AI大模型学习路线图,包括提示词工程、平台开发、微调训练等7个阶段,以及

2025-07-22 11:33:39 1074

原创 7月最新大模型八股文,三天背完通过率超98%——附【大模型面试题合集】pdf

大模型算法岗面试题汇总 随着大模型技术的快速发展,相关岗位竞争激烈。本文整理了大模型算法岗常见面试题,涵盖基础和进阶内容: 基础篇 主流开源模型体系:Transformer、PyTorch Lightning等 模型架构差异:prefix LM与causal LM的区别 大模型涌现能力的原因 主流开源模型:GPT、BERT、T5系列 模型幻觉问题及解决方案 Tokenizer实现原理(BPE算法) 常用激活函数:ReLU、GeLU等 进阶篇 输入长度限制问题 复读机问题成因及缓解方法 模型选型建议(BERT

2025-07-15 15:01:18 1136

原创 零代码!只需3步用DeepSeek+Ollama+AnythingLLM打造免费AI本地专属知识库(含原理)_ollama deepseek anythingllm

AI时代如何安全高效管理知识?3步搭建本地私有智能知识库 在数据爆炸的今天,个人和企业普遍面临文档混乱、检索低效的痛点。本文提出基于DeepSeek+Ollama+AnythingLLM的零代码解决方案,通过三大核心技术——嵌入模型(语义编码)、向量数据库(智能检索)、LLM大模型(智能应答),实现本地化知识管理。 核心优势: 1️⃣ 数据100%私有,敏感信息不出内网; 2️⃣ 低成本部署,普通电脑即可运行; 3️⃣ 智能问答,支持多格式文档自动解析,答案附带溯源。 三步搭建流程: 安装Ollama运行D

2025-07-15 14:55:56 301

原创 招聘平台大模型之战:我去求职,面试官竟然是AI_招聘领域大模型

摘要: 2025年校园招聘竞争激烈,毕业生投递量激增,HR面临简历筛选压力,AI技术成为助力。AI工具如Yeebot、HRMind等已应用于简历匹配、JD生成、智能面试等环节,提升效率。然而,招聘中的隐藏信息(如属相、星座偏好)和求职者美化简历等问题,AI尚难完全解决。部分HR担忧被取代,但调研显示未来更可能是人机协同。HR需向战略型转型,AI则需与人类价值观对齐,确保公平性。大模型虽优化流程,但人性化难题仍是挑战。(149字)

2025-07-14 16:31:23 855

原创 多轮对话中让AI保持长期记忆的8种优化方式(附案例和代码)_ai长期记忆

文章摘要: 本文探讨了在多轮对话中实现长期记忆保持的8种方法,结合LangChain代码展示了不同记忆方式的应用场景。1)全量历史对话适用于客服场景,保持连贯性;2)滑动窗口记忆适合电商咨询,聚焦最近问题;3)实体记忆在法律咨询中保留关键信息;4)知识图谱记忆用于医疗咨询,建立症状关联;5)摘要记忆在教育辅导中提炼重点;6)摘要缓冲记忆兼顾技术支持的近期细节与历史概要;7)令牌缓冲记忆在金融咨询中平衡近期与关键信息;8)向量检索记忆快速定位新闻事件相关背景。文章还提供了AI大模型学习资源包,包含书籍、报告、

2025-07-14 16:27:54 562

原创 DeepSeek+dify 本地知识库:高级应用Agent+工作流_dify工作流

本文介绍了Dify平台的三大核心功能:知识库管理、工作流编排和智能体应用。知识库支持文档上传与智能分段,提供向量检索功能;工作流可通过可视化节点组合实现复杂任务,支持变量传递和条件判断;智能体则能快速构建自动化应用。Dify的灵活性体现在零代码搭建能力,让非技术人员也能像拼积木一样创建AI应用。文章重点解析了知识库分段优化技巧、工作流变量类型及节点功能,并展示了如何利用模板快速构建应用。该平台通过模块化设计降低了AI应用开发门槛,适用于企业自动化和个人项目开发。

2025-07-14 16:25:50 1016

原创 2025别再乱学大模型了,按这个大模型学习顺序学效率翻倍!

2025年AI大模型学习路线指南:从零基础到实战进阶 摘要:本文针对2025年AI大模型学习需求,系统梳理了高效学习路径,避免常见误区。学习路线分为四个阶段:1-2周基础认知(理解原理与应用场景)、3-6周核心实践(掌握Prompt工程、RAG、LangChain等工具)、2-3个月深度优化(学习微调与评估方法),最后持续项目实战。强调"先建立框架再深入细节"的学习逻辑,推荐结合HuggingFace、LangChain等工具实践,并完成PDF问答系统等实战项目。文章指出系统性学习+持续

2025-07-03 17:56:56 1250

原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率_ollama+deepseek+dify

为啥要搭建本地知识库?现在企业内部信息管理太难了,数据到处都是,检索效率低得可怜,还缺乏智能化支持。尤其是面对海量非结构化数据,企业很难快速提取有价值的信息,决策效率低得不行。要是能有个工具解决这些问题,那可太棒了!

2025-07-03 17:33:11 976

原创 基于RAG的to B智能体(Agent)应用实践_rag 智能体

摘要:文章探讨了在CRM系统中应用RAG(检索增强生成)技术构建智能体(Agent)以优化客户筛选流程。传统筛选方式操作繁琐且效率低,而基于RAG的“视图助手”Agent通过语义理解实现一步式筛选。初期方案因大模型幻觉问题效果不佳,后采用RAG技术将过滤条件及其参数向量化存储,通过相似度检索提高准确性。该方案简化了筛选步骤,提升了用户体验,展示了RAG在to B领域的创新应用潜力。(149字)

2025-07-03 17:30:01 1010

原创 【大模型实战篇】创建有效的大模型提示词Prompt(提示词工程)_大模型提示词生成

摘要:随着生成式AI工具的普及,如何撰写有效提示词(prompts)成为提升与大模型交互质量的关键。本文总结了优质提示词的核心要素:明确目标、提供适当上下文、定义输出格式及设置角色。具体策略包括分步骤拆解复杂任务、让模型自检推理过程、利用少样本提示技术,并注意上下文窗口限制。通过示例展示如何结合货币政策与财政政策分析股市走向,体现结构化提示的应用。文章强调提示词清晰度与具体性的重要性,为使用者优化AI交互体验提供实用指南。(149字)

2025-07-03 17:10:21 1039

原创 一文读懂「Prompt Engineering」提示词工程 基础版

提示工程(Prompt Engingering),也被称为上下文提示(in-ContextPromnpting),指的是通过结构化文本等方式来完善提示词,引导LLN输出我们期望的结果。通过提示词工程可以在不更新模型权重的情况下,让LLM完成不同类型的任务。其主要依赖于经验,而且提示词工程方法的效果在不同的模型中可能会有很大的差异,因此需要大量的实验和探索

2025-07-03 17:07:12 670

原创 大模型本地化部署终于出书了!!《ChatGLM3大模型本地化部署、应用开发与微调》(附PDF)_chatglm3大模型本地化部署、应用开发与微调下载

《ChatGLM3大模型本地化部署与应用开发》是一本专注于深度学习与大模型实战的指南。作为《PyTorch 2.0深度学习从零开始学》的姊妹篇,本书通过13个章节系统介绍了大模型的本地化部署与应用开发全流程,涵盖环境搭建、gradio云上部署、LangChain智能问答系统开发、知识图谱抽取等核心内容,并包含财务报表分析等企业级应用案例。书中既有PyTorch 2.0环境配置等基础内容,也深入探讨了Template与Chain机制、多文本检索增强等进阶技术,为开发者提供从理论到实践的完整学习路径,助力读者掌

2025-07-03 11:47:12 1061

原创 LLM——10个大型语言模型(LLM)常见面试题以及答案解析_llm 事实类问题 分析类问题

本文总结了大型语言模型(LLM)面试中的常见问题:1.减轻提示学习偏见的最佳方法是提示校准(C);2.并非所有文本任务都需要向量存储,如情感分析和翻译;3.数据增强(C)不是专门用于对齐人类价值观的技术,而RLHF和DPO是;4.未完整呈现的第四题涉及RLHF中的"reward hacking"概念。这些问题涵盖了LLM的核心技术要点,包括偏差处理、存储需求和对齐方法等关键知识点。

2025-07-03 11:39:55 640

原创 高级检索增强生成技术(RAG)全面指南:原理、分块、编码、索引、微调、Agent、展望_rag原理

本文系统梳理了检索增强生成(RAG)技术的关键实现方法。RAG通过检索外部信息作为上下文,缓解大语言模型的幻觉问题。文章首先介绍了基础RAG流程:文本分块、向量化、索引构建和提示生成。重点探讨了高级RAG技术中的分块策略,包括固定大小分块、内容感知分块(句子分块、递归分块等)及优化方法,强调需根据数据特性、模型限制和应用场景选择合适的分块方案。文章为开发者提供了RAG技术的系统化实践指导,有助于构建更可靠的生成式AI系统。

2025-07-03 11:36:23 666

原创 用大模型做一个聊天机器人!(非常详细)大模型做聊天机器人保姆级教程!_聊天大模型

摘要: 聊天机器人看似简单,但实际开发涉及复杂技术。通过大模型API(如阿里通义千问)可快速实现基础对话功能,核心是定义角色(如system/user)和上下文管理。然而,实际应用(如智能客服)需解决行业知识不足、实时信息更新、准确性保障等问题,可能结合RAG、AI Agent、TTS等技术。此外,集成AIGC能力(文档处理、语音交互等)可提升体验,表明聊天机器人背后需庞大系统支撑,技术复杂度远超表面。

2025-06-27 10:30:00 912

原创 2025AI大模型时代:程序员面临的挑战与机遇,及如何抓住AI风口转行大模型?

近年来,人工智能技术的快速发展让AI大模型成为科技领域的“新宠”。从GPT、BERT到如今的多模态大模型,AI正以前所未有的速度改变着各行各业。在这场技术变革中,程序员的角色也在悄然发生转变。一方面,传统编程技能面临被AI工具替代的风险;另一方面,掌握AI大模型技术的人才成为市场上的“香饽饽”。那么,在这个AI大模型时代,程序员究竟面临着哪些挑战和机遇?又该如何抓住风口实现转型呢?

2025-06-27 10:15:00 1782

原创 Embedding模型选型思路:决定知识库与RAG的准确率上限!

Embedding模型选型思路与性能对比 嵌入模型(Embedding)作为AI核心技术,将非结构化数据映射为低维向量,实现语义特征捕捉(如文本嵌入可达1536维)。当前主流模型在MTEB基准测试中表现差异显著: 性能前三模型: Gemini-embedding-exp-03-07:3072维向量,平均得分68.32,STS任务79.40分 Linq-Embed-Mistral:7B参数量,4096维,平均61.47分 gte-Qwen2-7B-instruct:3584维,任务平均62.51分 关键发现:

2025-06-27 10:00:00 706

原创 【RAG实践】Rerank,让RAG更近一步

本文介绍了如何结合Rerank技术优化RAG(检索增强生成)系统,通过LlamaIndex框架和通义千问1.5大模型,构建更高效的本地知识库问答机器人。文章重点阐述了Rerank的原理和作用,即通过重新排序和筛选检索结果提升回答准确率。实践环节详细展示了环境配置、模型加载(使用GTE文本向量和bge-reranker-v2-m3)、数据处理以及系统搭建的全流程,并提供了在魔搭社区PAI-DSW平台的运行指南。该方法在不损失准确性的前提下显著提升了查询效率。

2025-06-26 23:22:11 844

原创 内行人都在学的大模型黑书——外网爆火的LLM应用手册来了!

《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》可作为所有对Transformer 工作原理感兴趣的人的参考书。作者在理论和实践两方面都做出了出色的工作,详细解释了如何逐步使用Transformer。阅读完本书后,你将能使用这一最先进的技术集合来增强你的深度学习应用能力。本书在详细介绍BERT、RoBERTa、T5 和GPT-3 等流行模型前,先讲述了Transformer 的架构以便为你的学习奠定坚实基础。本书还讲述了如何将Transformer 应用于许多用例,如

2025-06-26 06:40:31 1349

原创 一文读懂RAGFlow:从 0 到 1教你搭建RAG知识库

《RAGFlow知识库搭建指南》摘要:RAGFlow是一种结合检索技术与生成式AI的创新系统,通过检索模块从海量数据中快速定位信息,再由生成模块整合成自然语言响应。该系统突破传统模型的记忆限制,在客服、问答、推荐等场景显著提升响应质量与效率。核心优势包括:高效数据整合、生成质量优化及多领域适用性。文章详细解析了RAGFlow的双模块架构(检索+生成),并附系统架构图,为开发者提供实践参考。(149字)

2025-06-26 06:35:36 979

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除