Dify 入门与工作流节点介绍

什么是Dify

Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。

img

由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。

为什么使用 Dify?

https://docs.dify.ai/zh-hans

你或许可以把 LangChain 这类的开发库(Library)想象为有着锤子、钉子的工具箱。与之相比,Dify 提供了更接近生产需要的完整方案,Dify 好比是一套脚手架,并且经过了精良的工程设计和软件测试。

重要的是,Dify 是开源的,它由一个专业的全职团队和社区共同打造。你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力,在灵活和安全的基础上,同时保持对数据的完全控制。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

Dify 应用创建过程

https://docs.dify.ai/zh-hans/guides/application-orchestrate

*创建空白应用*

img

  • 聊天助手:这是最基础的应用类型,适合新手开发者快速上手。通过简单配置,你可以构建一个基于 LLM(Large Language Model,大型语言模型)的对话机器人。

img

  • Agent:这种应用类型具备推理与自主工具调用的能力,是一个更智能的助手。它不仅可以进行简单的对话,还可以根据用户的输入进行逻辑推理,并调用相关的工具或服务来完成复杂的任务。

img

  • Chatflow:这是一种支持记忆的复杂多轮对话工作流,适合进阶用户。它允许开发者构建更加复杂和智能的对话系统,可以处理多轮对话,并且能够记住用户的上下文信息。

img

  • 工作流:面向单轮自动化任务的编排工作流,主要用于处理单轮的自动化任务。开发者可以通过编排工作流,将多个任务或服务组合在一起,实现自动化的操作。

img

*从应用模板中创建*

初次使用 Dify 时,你可能对于应用创建比较陌生。为了帮助新手用户快速了解在 Dify 上能够构建哪些类型的应用,Dify 团队内的提示词工程师已经创建好了多场景、高质量的应用模板。

img

*导入DSL文件*

Dify DSL 是由 Dify.AI 所定义的 AI 应用工程文件标准,文件格式为 YML。该标准涵盖应用在 Dify 内的基本描述、模型参数、编排配置等信息。

img

如果你从社区或其它人那里获得了一个应用模版(DSL 文件),可以从工作室选择 「 导入DSL 文件 」。DSL 文件导入后将直接加载原应用的所有配置信息。

工作流节点说明

节点是工作流的关键构成,通过连接不同功能的节点,执行工作流的一系列操作。

面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。该类型应用无法对生成的结果进行多轮对话交互。

*开始节点*

“开始” 节点是每个工作流应用(Chatflow / Workflow)必备的预设节点,为后续工作流节点以及应用的正常流转提供必要的初始信息,例如应用使用者所输入的内容、以及上传的文件等。

img

*LLM节点*

调用大语言模型的能力,处理用户在 “开始” 节点中输入的信息(自然语言、上传的文件或图片),给出有效的回应信息。

img

*知识检索节点*

从知识库中检索与用户问题相关的文本内容,可作为下游 LLM 节点的上下文来使用。

img

*问题分类节点*

通过定义分类描述,问题分类器能够根据用户输入,使用 LLM 推理与之相匹配的分类并输出分类结果,向下游节点提供更加精确的信息。

img

*条件分支节点*

根据 If/else/elif 条件将 Chatflow / Workflow 流程拆分成多个分支。

img

*代码执行节点*

代码节点支持运行 Python / NodeJS 代码以在工作流程中执行数据转换。它可以简化你的工作流程,适用于Arithmetic、JSON transform、文本处理等情景。

img

*模板转换节点*

模板节点允许你借助 Jinja2 这一强大的 Python 模板语言,在工作流内实现轻量、灵活的数据转换,适用于文本处理、JSON 转换等情景。例如灵活地格式化并合并来自前面步骤的变量,创建出单一的文本输出。这非常适合于将多个数据源的信息汇总成一个特定格式,满足后续步骤的需求。

img

*文档提取器*

LLM 自身无法直接读取或解释文档的内容。因此需要将用户上传的文档,通过文档提取器节点解析并读取文档文件中的信息,转化文本之后再将内容传给 LLM 以实现对于文件内容的处理。

img

*列表操作节点*

列表操作节点可以对文件的格式类型、文件名、大小等属性进行过滤与提取,将不同格式的文件传递给对应的处理节点,以实现对不同文件处理流的精确控制。

img

*变量聚合节点*

通过变量聚合,可以将诸如问题分类或条件分支等多路输出聚合为单路,供流程下游的节点使用和操作,简化了数据流的管理。

img

*变量赋值节点*

你可以将对话过程中的上下文、上传至对话框的文件、用户所输入的偏好信息等变量,通过变量赋值节点写入至会话变量内,用作后续对话的参考信息。

img

*迭代节点*

对数组中的元素依次执行相同的操作步骤,直至输出所有结果,可以理解为任务批处理器。迭代节点通常配合数组变量使用。

img

*参数提取节点*

利用 LLM 从自然语言推理并提取结构化参数,用于后置的工具调用或 HTTP 请求。

img

*HTTP 请求节点*

允许通过 HTTP 协议发送服务器请求,适用于获取外部数据、webhook、生成图片、下载文件等情景。它让你能够向指定的网络地址发送定制化的 HTTP 请求,实现与各种外部服务的互联互通。

img

*Agent节点*

Agent 节点是 Dify Chatflow/Workflow 中用于实现自主工具调用的组件。它通过集成不同的 Agent 推理策略,使大语言模型能够在运行时动态选择并执行工具,从而实现多步推理。

*工具节点*

“工具”节点可以为工作流提供强大的第三方能力支持,分为以下三种类型:

  • 内置工具,Dify 第一方提供的工具,使用该工具前可能需要先给工具进行 授权
  • 自定义工具,通过 OpenAPI/Swagger 标准格式导入或配置的工具。如果内置工具无法满足使用需求,你可以在 Dify 菜单导航 --工具 内创建自定义工具。
  • 工作流,你可以编排一个更复杂的工作流,并将其发布为工具。详细说明请参考工具配置说明。

*结束节点*

定义一个工作流程结束的最终输出内容。每一个工作流在完整执行后都需要至少一个结束节点,用于输出完整执行的最终结果。

*直接回复节点*

你可以在文本编辑器中自由定义回复格式,包括自定义一段固定的文本内容、使用前置步骤中的输出变量作为回复内容、或者将自定义文本与变量组合后回复。

*循环节点*

循环(Loop)节点用于执行依赖前一轮结果的重复任务,直到满足退出条件或达到最大循环次数。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

<think>好的,用户现在想了解Dify节点的相关信息或配置,特别是节点的配置和使用方法。让我先回顾一下之前的对话历史和提供的参考资料。用户之前询问了如何下载Dify源码,现在转向节点的具体配置和使用。 首先,用户提供的引用中提到了零基础AI开发系列教程中的Dify节点详细介绍,分为上、中、下三部分,这可能涉及节点的类型、功能以及具体操作步骤。另外,引用[2]提到了HTTP请求节点的认证方式,引用[3]则讨论了变量聚合节点的作用。这些信息都是关键点,需要整合到回答中。 用户的具体问题是如何配置和使用Dify节点,因此需要分步骤解释,包括节点类型、配置步骤、常见节点的操作示例,以及注意事项。可能需要结合之前的回答中提到的源码结构和相关模块,如蓝图控制器,来增强回答的专业性。 需要注意的是,用户可能对Dify工作流设计不太熟悉,因此需要从基础开始解释,例如节点的概念、如何添加到工作流、配置参数等。同时,结合引用中的HTTP节点和变量聚合节点作为例子,能够具体说明配置过程,帮助用户理解。 另外,用户之前的问题涉及源码下载和依赖项,因此在回答节点配置时,可能需要提到环境准备,比如确保Docker和相关服务已正确安装,这部分在之前的回答中已经提到过,可以引用之前的建议作为参考。 还需要考虑用户可能的后续问题,比如遇到配置错误如何处理,或如何调试节点,所以应在注意事项中涵盖这些方面,或者生成相关问题引导用户进一步探索。 最后,确保回答结构清晰,分点说明,并正确引用提供的资料,比如引用[1]的教程系列,引用[2]的HTTP节点认证,引用[3]的变量聚合节点功能。同时,使用中文,符合格式要求,行内公式用$...$,独立公式用$$...$$,但可能这里公式较少,重点在配置步骤和代码示例。</think>### Dify 节点配置使用详解 Dify节点工作流设计的核心组件,用于实现数据处理、逻辑控制和结果聚合等功能。以下是节点配置使用的关键要点及操作示例: --- #### 一、节点基础配置 1. **节点类型功能** - **输入节点**:接收外部数据(如用户输入、API请求) - **处理节点**:执行逻辑操作(如LLM调用、条件分支、变量聚合[^3]) - **输出节点**:返回最终结果(如API响应、文件生成) 2. **通用配置步骤** ```bash # 示例:通过Dify界面配置节点的基本流程 1. 创建工作流 -> 拖拽节点至画布 -> 连接节点 2. 双击节点 -> 填写参数 -> 保存配置 ``` - **必填字段**:节点名称、输入/输出变量映射 - **动态参数**:支持通过 `{{variable}}` 语法引用上下文变量 --- #### 二、常见节点操作示例 1. **HTTP请求节点** *(适用于调用外部API)* - **认证配置**: 使用Bearer Token认证时,需在请求头添加: ```http Authorization: Bearer {{your_api_key}}[^2] ``` - **参数映射**: 将上游节点的输出变量(如 `{{query_result}}`)映射到请求体参数 2. **变量聚合节点** *(整合多分支结果)* ```yaml # 配置示例:聚合分类结果 branches: - path: A output_vars: {category: "科技"} - path: B output_vars: {category: "生活"} aggregated_var: unified_category[^3] ``` - **作用**:将不同分支的 `category` 变量统一映射为 `unified_category` 3. **LLM调用节点** *(核心AI处理单元)* - **模型选择**:支持本地部署模型(如DeepSeek)或云端API - **提示词模板**: 使用动态变量增强灵活性: ```python "请根据{{user_input}}生成摘要,限制{{max_length}}字" ``` --- #### 三、高级配置技巧 1. **条件分支控制** ```python # 通过表达式实现动态路由 if {{input.score}} > 0.7: route_to = "positive_feedback" else: route_to = "default_process" ``` 2. **错误处理机制** - **重试策略**:配置HTTP节点的超时时间重试次数 - **异常捕获**:添加备用处理节点应对API调用失败 3. **性能优化** - **并行执行**:对无依赖关系的节点启用并行处理 - **缓存设置**:为LLM节点配置结果缓存(需启动Redis服务[^1]) --- #### 四、注意事项 1. **环境依赖** 确保已部署 PostgreSQL(数据库)、Redis(缓存)、Weaviate(向量搜索)等基础设施[^1] 2. **调试工具** 使用工作流的 **"测试运行"** 功能实时观察变量传递状态 3. **版本兼容** 升级Dify版本时需检查节点配置变更(参考《Dify升级指南》[^1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值