什么是Dify
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。

由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。
为什么使用 Dify?
https://docs.dify.ai/zh-hans
你或许可以把 LangChain 这类的开发库(Library)想象为有着锤子、钉子的工具箱。与之相比,Dify 提供了更接近生产需要的完整方案,Dify 好比是一套脚手架,并且经过了精良的工程设计和软件测试。
重要的是,Dify 是开源的,它由一个专业的全职团队和社区共同打造。你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力,在灵活和安全的基础上,同时保持对数据的完全控制。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

Dify 应用创建过程
https://docs.dify.ai/zh-hans/guides/application-orchestrate
*创建空白应用*

- 聊天助手:这是最基础的应用类型,适合新手开发者快速上手。通过简单配置,你可以构建一个基于 LLM(Large Language Model,大型语言模型)的对话机器人。

- Agent:这种应用类型具备推理与自主工具调用的能力,是一个更智能的助手。它不仅可以进行简单的对话,还可以根据用户的输入进行逻辑推理,并调用相关的工具或服务来完成复杂的任务。

- Chatflow:这是一种支持记忆的复杂多轮对话工作流,适合进阶用户。它允许开发者构建更加复杂和智能的对话系统,可以处理多轮对话,并且能够记住用户的上下文信息。

- 工作流:面向单轮自动化任务的编排工作流,主要用于处理单轮的自动化任务。开发者可以通过编排工作流,将多个任务或服务组合在一起,实现自动化的操作。

*从应用模板中创建*
初次使用 Dify 时,你可能对于应用创建比较陌生。为了帮助新手用户快速了解在 Dify 上能够构建哪些类型的应用,Dify 团队内的提示词工程师已经创建好了多场景、高质量的应用模板。

*导入DSL文件*
Dify DSL 是由 Dify.AI 所定义的 AI 应用工程文件标准,文件格式为 YML。该标准涵盖应用在 Dify 内的基本描述、模型参数、编排配置等信息。

如果你从社区或其它人那里获得了一个应用模版(DSL 文件),可以从工作室选择 「 导入DSL 文件 」。DSL 文件导入后将直接加载原应用的所有配置信息。
工作流节点说明
节点是工作流的关键构成,通过连接不同功能的节点,执行工作流的一系列操作。
面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。该类型应用无法对生成的结果进行多轮对话交互。
*开始节点*
“开始” 节点是每个工作流应用(Chatflow / Workflow)必备的预设节点,为后续工作流节点以及应用的正常流转提供必要的初始信息,例如应用使用者所输入的内容、以及上传的文件等。

*LLM节点*
调用大语言模型的能力,处理用户在 “开始” 节点中输入的信息(自然语言、上传的文件或图片),给出有效的回应信息。

*知识检索节点*
从知识库中检索与用户问题相关的文本内容,可作为下游 LLM 节点的上下文来使用。

*问题分类节点*
通过定义分类描述,问题分类器能够根据用户输入,使用 LLM 推理与之相匹配的分类并输出分类结果,向下游节点提供更加精确的信息。

*条件分支节点*
根据 If/else/elif 条件将 Chatflow / Workflow 流程拆分成多个分支。

*代码执行节点*
代码节点支持运行 Python / NodeJS 代码以在工作流程中执行数据转换。它可以简化你的工作流程,适用于Arithmetic、JSON transform、文本处理等情景。

*模板转换节点*
模板节点允许你借助 Jinja2 这一强大的 Python 模板语言,在工作流内实现轻量、灵活的数据转换,适用于文本处理、JSON 转换等情景。例如灵活地格式化并合并来自前面步骤的变量,创建出单一的文本输出。这非常适合于将多个数据源的信息汇总成一个特定格式,满足后续步骤的需求。

*文档提取器*
LLM 自身无法直接读取或解释文档的内容。因此需要将用户上传的文档,通过文档提取器节点解析并读取文档文件中的信息,转化文本之后再将内容传给 LLM 以实现对于文件内容的处理。

*列表操作节点*
列表操作节点可以对文件的格式类型、文件名、大小等属性进行过滤与提取,将不同格式的文件传递给对应的处理节点,以实现对不同文件处理流的精确控制。

*变量聚合节点*
通过变量聚合,可以将诸如问题分类或条件分支等多路输出聚合为单路,供流程下游的节点使用和操作,简化了数据流的管理。

*变量赋值节点*
你可以将对话过程中的上下文、上传至对话框的文件、用户所输入的偏好信息等变量,通过变量赋值节点写入至会话变量内,用作后续对话的参考信息。

*迭代节点*
对数组中的元素依次执行相同的操作步骤,直至输出所有结果,可以理解为任务批处理器。迭代节点通常配合数组变量使用。

*参数提取节点*
利用 LLM 从自然语言推理并提取结构化参数,用于后置的工具调用或 HTTP 请求。

*HTTP 请求节点*
允许通过 HTTP 协议发送服务器请求,适用于获取外部数据、webhook、生成图片、下载文件等情景。它让你能够向指定的网络地址发送定制化的 HTTP 请求,实现与各种外部服务的互联互通。

*Agent节点*
Agent 节点是 Dify Chatflow/Workflow 中用于实现自主工具调用的组件。它通过集成不同的 Agent 推理策略,使大语言模型能够在运行时动态选择并执行工具,从而实现多步推理。
*工具节点*
“工具”节点可以为工作流提供强大的第三方能力支持,分为以下三种类型:
- 内置工具,Dify 第一方提供的工具,使用该工具前可能需要先给工具进行 授权。
- 自定义工具,通过 OpenAPI/Swagger 标准格式导入或配置的工具。如果内置工具无法满足使用需求,你可以在 Dify 菜单导航 --工具 内创建自定义工具。
- 工作流,你可以编排一个更复杂的工作流,并将其发布为工具。详细说明请参考工具配置说明。
*结束节点*
定义一个工作流程结束的最终输出内容。每一个工作流在完整执行后都需要至少一个结束节点,用于输出完整执行的最终结果。
*直接回复节点*
你可以在文本编辑器中自由定义回复格式,包括自定义一段固定的文本内容、使用前置步骤中的输出变量作为回复内容、或者将自定义文本与变量组合后回复。
*循环节点*
循环(Loop)节点用于执行依赖前一轮结果的重复任务,直到满足退出条件或达到最大循环次数。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓


859

被折叠的 条评论
为什么被折叠?



