写在最前:周日下午和晚上兴军老师给UGP小伙伴们深入浅出地讲了4小时的AI发展20年。兴军老师讲的是100分,我吸收到的只有30分。现在将我的30分整理巩固下,也分享给对AI感兴趣的,之前不了解AI的朋友们。
一、AI和概率
1.1AI本质是一个经过简化的概率
从时间轴上看人类所有的问题都是概率
出生即是概率,早上穿什么衣服鞋,接受或拒绝别人的帮助,回应或不回应,热情回应或冷漠回应…总之所有事都主打一个概率。概率准但不绝对准,物理和逻辑在很多时候无法解释,不符合人类对绝对真理追求的特性,但能拿到绝对有效的结果。
AI是概率的统计,是庞杂的神经网络上概率统计的输入和输出结果。因此通过AI建模的语言模型或者说大部分不确定性系统,都很有效but不好论证。(也因此,AI发展过程中充斥着主流学界的不认可,AI领域的研究者无法发表论文只能在各种比赛上参赛以获得声量和认可。)
GPT等语言模型通过概率解决问题的方法本质上是 结合上下文,推断出接下来一个token出现的概率。token可以粗暴的理解为字符或者文字(汉字中一个偏旁是一个token,英语中大概2/3个单词是一个token)。是的,不是句子也不是单词,是偏旁部首。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
这里有几个概念:
1.AI在概率问题的计算上有两种方式:生成式和判别式
生成式:计算联合概率
例如“我是人”这句话,“我”出现后,将“是”字的出现设置为事件A,其发生的概率为0.5,“人”出现的概率为事件B,其概率为0.001,由于事件A和B并没有什么影响,是相互独立的,那么“是人”的概率就是P(A)P(B) = 0.0005
判别式:判断和标注
例如“我是人”这句话,它的情绪是正向的、负向的还是中性的。
2.AI在计算中的简化(马尔可夫-语言模型)
这个语言模型的贡献说白了是发现了“当字数够多的时候,一个字的出现往往只受它相邻的几个字的影响,所以计算上下文的概率只考虑相邻几个字即可”
p(AB)=p(A|B)*p(B)
p(w1)*p(w2|w1)…p(wn|w1,w2…wn-1)
p(w1)*p(w2|w1)*p(w3|w1,w2)*p(w4|w2,w3)
3.PageRank(网页引用权重)
对于一句话一个观点而言,互联网上有成千上万的数据,但每个网页的权重是不一样的,权威网站发表的权威数据可能更为重要,PageRank通过计算随机游走后停留在某一个网页的概率,决定最后应该引用哪个网页。
二、从向 量到神经网络语言模型
2.1向量
每个字都可以通过一连串的向量表示,计算向量相似度推出关联性(通过cos[余弦]值趋近于零)。来让系统/模型记录在空间里不同语料的相关性。
搜了一下词向量构造方法,感兴趣的点这个网址:https://www.zhihu.com/market/pub/120170855/manuscript/1368488178710532096
2.2神经网络语言模型
表示学习,训练向量 ( word to vec 2012)
通过“我”和“中”的向量计算出“是”的向量出现的概率。需要模型足够大,语料足够多的训练。上面只是一层,但实际上有成千上万层神经网络状的概率计算和表示学习,最终就像这样:
King-man+woman=Queen
programmer-father+mother=homeworker
图为兴军老师在解释AI的图像识别,时间有限暂时不展开。
在这个发展时期人类遇到的问题体现在图像标注,如果想让机器识别图像里的准确内容有什么,需要前期大量的人工标注,让机器学习人工标注的方法来学习(通过概率而非定理或真理)。
三、 GPT其实是他爸爸的一部分:transfomer模型(这里最重要的是理解序列)
transfomer模型训练的输入和输出都是序列,序列比向量的优势在于序列可以定义同一个语料的多个向量组合,比如我说苹果,通过上下文语意的理解,我们才能知道这里的苹果是吃的苹果还是用的苹果公司的设备。
transfomer模型由于时间的关系兴军老师这里没有细讲了,留给日后自己的作业。下图是的transfomer整体架构,成为了日后语言训练的九阴真经,上半部是谷歌BERT模型,下半部是OpenAI的GPT。
BERT不了解不展开,给大家找了资料,总结就是比GPT模型成本高:
NLP必读:十分钟读懂谷歌BERT模型 https://zhuanlan.zhihu.com/p/51413773
GPT
GPT需要人类下达指令训练(prompt),好的prompt可以让你的GPT非常厉害,因此人类接下来应该努力学习如何掌握好的prompt方法。
四、 GPT训练的核心逻辑-标注和判定
Instruct1个序列,out出多个可能的概率结果,就是上图的O1,O2和O3。
然后需要判定哪个结果好,更符合逻辑,这里最早通过人工打分的方式判定可能的好结果比如O3好于O1好于O2,让机器还是通过概率学习掌握人类的打分。之后当规模达到百亿后出现了“涌现”,也就是学习N个任务后可以触类旁通解决N+1个问题。自此机器完成了自身的训练学习闭环,有了判断结果的能力。
对了,由于本质是概率,为了让GPT不是一个信口开河的文字接龙模型,人类用到了RLHF技术,让GPT成为一个人,拥有符合人类的思维方式、表达、和认知三观等等。
GPT功臣——生成领域的新训练范式:RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。
目前,千亿数据规模的大语言模型——GPT在突飞猛进地进步着,是时候拥有一个你自己的GPT助理了。但是要小心,她不一定对,也可能骗你,对于全新东西没有创造力(但是我们有吗?哈哈)且不可否认的,她可能是你见过的最聪明的人类。
就像兴军老师说的,所有的行业都可以用现在的AI语言模型技术再做一遍交互。这是平民的AI时代和技术。
当然,建造区域化的大语言模型也很重要。不然很快,英语、资本主义、霸权主义背后的世界观,会席卷地球。
深呼吸,学习使用GPT
人工智能大模型越来越火了,离全民大模型的时代不远了,大模型应用场景非常多,不管是做主业还是副业或者别的都行,技多不压身,我这里有一份全套的大模型学习资料,希望给那些想学习大模型的小伙伴们一点帮助!
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。