一、网安学习成长路线图
网安所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、网安视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
三、精品网安学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、网络安全源码合集+工具包
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、网络安全面试题
最后就是大家最关心的网络安全面试题板块
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
式中i的取值与十进制展开式的规定相同。
「变量详解」:
N称为计数的基数;
k为第i位的系数;
N称为第i位的权。
🎈(2)二进制:
目前在数字电路(我们生活在0和1组成的世界里!)中应用最广泛的是二进制。在二进制数中,每一位仅有0和1两个可能的数码,所以计数基数为2。其中低位和相邻高位之间的进位关系是:“逢二进一”, 故称为二进制。
①根据N进制数展开的普遍形式可得任意一个二进制数均可展开为:在这里插入图片描述
②并可利用上式计算出任一二进制数所表达的十进制数的大小:
上式中分别使用下脚注2和10表示括号里的数是二进制数和十进制数。/有时也用B( Bima-ry)和D( Decimal)代替2和10这两个脚注。
🎈(3)八进制:
八进制数的每一位有0~7 八个不同的数码,在二进制数中,计数的基数为8。其中低位和相邻高位之间的进位关系是:“逢八进一”, 故称为八进制。
①根据N进制数展开的普遍形式可得任意一个八进制数均可展开为:
②并可利用上式计算出任一八进制数所表达的十进制数的大小:
有时也用O(Oetal)代替下脚注8,表示八进制数。
🎈(4)十六进制:
十六进制数的每一位有十六个不同的数码,分别用0~9.A(10)、B(11) .C(12)、D(13)、E(14)、P(15)表示。在十六进制数中,计数的基数为16。其中低位和相邻高位之间的进位关系是:“逢十六进一”, 故称为十六进制。
①根据N进制数展开的普遍形式可得任意一个十六进制数均可展开为:
②并可利用上式计算出任一十六进制数所表达的十进制数的大小:
式中的下脚注16表示括号里的数是十六进制数,有时也用H( Hexadecimal)代替这个脚注,0X表示前缀。
🎈(5)不同进制数的对照表:
小拓展:
- 一位八进制可以表示三位二进制数:
解读:
因为三位二进制最小是000b,最大是111b,其范围恰好在0-7,构成了八进制一位。 - 一位十六进制可以表示为四位二进制:
解读:
十六进制数的进率是16,二进制数的进率是2,且16=2^4,说明二进制数连续进位4次,等效于16进制数进1位。这么说可能不好理解,那么举个例子吧,比如15+1=16,用二进制表示就是1111+1=10000,用十六进制表示就是F+1=10。这也就说明了一位十六进制数对应四位二进制数了
🔞2.不同进制间的转换:
🎈(1)八进制,二进制,十六进制转换为十进制:
都可根据上述介绍十进制的时候讲解的——多位任意进制数展开式的普遍形式进行转换,即按位权展开式。
🎈(2)十进制转换为二进制,八进制,十六进制:
十进制整数转换R进制(R可以是任何整数,比如2,8,16)整数,方法就是除R取余。
①十进制转换为二进制:
十进制整数转换为二进制方法:除二取余,从下往上倒序排序!
十进制小数转换为二进制方法:乘二取整,从上向下顺序排序!
②十进制转换为十六进制:
十进制数为整数时,除16取余;
十进制数为小数时,乘16取整。
(具体步骤拟同十进制转换为二进制!)
③十进制转换为八进制:
十进制为整数时,除八取余;
十进制为小数时,乘八取整。
(具体步骤拟同十进制转换为二进制!)
🎈(3)二进制转换为十六进制:
只要从低位到高位将整数部分每4位二进制数分为一组并代之以等值的十六进制数,同时从高位到低位将小数部分的每4位数分为一组并代之以等值的十六进制数,即可得到对应的十六进制数。
注意:
若二进制数整数部分最高一组不足4位时,用0补足4位; |
小数部分最低一组不足 4位时,也需用0补足4位。 |
|
🎈(4)二进制转换为八进制:
只要将二进制数的整数部分从低位到高位每3位分为一组并代之以等值的八进制数,同时将小数部分从高位到低位每3位分为一组并代之以等值的八进制数,即可得到对应的八进制数。
注意:
二进制数最高一组不足3位或小数部分最低一组不足3位时,仍需以0补足三位! |
🎈(5)十六进制转换为二进制:
转换时只需将十六进制数的每一位用等值的4位二进制数代替即可!
🎈(6)八进制转换为二进制:
转换时只需将八进制数的每一位用等值的3位二进制数代替即可!
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
-1714991847537)]
[外链图片转存中…(img-ver5mZxn-1714991847538)]
[外链图片转存中…(img-kxEMItDH-1714991847538)]
[外链图片转存中…(img-MPri95yt-1714991847539)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新