y = data[‘value’] # Take the second column of data
Spline interpolation of correlation functions in SciPy Library
tck = interpolate.splrep(x, y) #(t,c,k)包含节点向量、B样条曲线系数和样条曲线阶数的元组。
xx = np.linspace(min(x), max(x), 200)
yy = interpolate.splev(xx, tck, der=0)
x1,x2=-0.02,2.56
y1=interpolate.splev(x1,tck,der=0)
y2=interpolate.splev(x2,tck,der=0)
print(‘When x = -0.02, the value of Y is:’,y1)
print(‘When x = 2.56, the value of Y is:’,y2)
print(yy)
plt.plot(x, y,‘ro’, xx, yy ,‘b’)
plt.legend([‘true’, ‘cubic spline’])
plt.xlabel(‘X’)
plt.ylabel(‘Y’)
plt.grid(True)
plt.title(‘Three moment method of cubic spline interpolation’)
Save picture
plt.savefig(‘out2.png’, dpi=600)
Set the resolution at which you want to save the picture
plt.show()
[注] 1、pd.DataFrame()函数;2、SciPy interpolate(插值)
4、结果
When x = -0.02, the value of Y is: -2.7618446933498895
When x = 2.56, the value of Y is: 4.73015581306341
[-2.46000000e+00 -2.78641445e+00 -3.08977770e+00 -3.37066746e+00
-3.62966147e+00 -3.86733746e+00 -4.08427316e+00 -4.28104630e+00
-4.45823461e+00 -4.61641582e+00 -4.75616766e+00 -4.87806786e+00
-4.98269414e+00 -5.07062425e+00 -5.14243590e+00 -5.19870684e+00
-5.24001478e+00 -5.26693746e+00 -5.28005262e+00 -5.27993797e+00
-5.26717125e+00 -5.24233019e+00 -5.20599252e+00 -5.15873597e+00
-5.10113827e+00 -5.03377715e+00 -4.95723034e+00 -4.87207557e+00
-4.77889057e+00 -4.67825307e+00 -4.57074080e+00 -4.45693149e+00
-4.33740287e+00 -4.21273266e+00 -4.08349861e+00 -3.95027844e+00
-3.81364988e+00 -3.67419066e+00 -3.53247850e+00 -3.38909115e+00
-3.24460633e+00 -3.09960177e+00 -2.95465520e+00 -2.81034434e+00
-2.66724694e+00 -2.52594072e+00 -2.38700341e+00 -2.25101274e+00
-2.11854644e+00 -1.99018224e+00 -1.86649786e+00 -1.74794500e+00
-1.63451294e+00 -1.52608502e+00 -1.42254454e+00 -1.32377483e+00
-1.22965918e+00 -1.14008093e+00 -1.05492338e+00 -9.74069856e-01
-8.97403663e-01 -8.24808121e-01 -7.56166544e-01 -6.91362247e-01
-6.30278546e-01 -5.72798756e-01 -5.18806191e-01 -4.68184167e-01
-4.20815999e-01 -3.76585002e-01 -3.35374491e-01 -2.97067781e-01
-2.61548188e-01 -2.28699025e-01 -1.98403609e-01 -1.70545255e-01
-1.45007277e-01 -1.21672990e-01 -1.00425711e-01 -8.11487529e-02
-6.37254319e-02 -4.80390629e-02 -3.39729610e-02 -2.14104413e-02
-1.02348187e-02 -3.29408529e-04 8.42247428e-03 1.61375146e-02
2.29323974e-02 2.89238074e-02 3.42284298e-02 3.89629493e-02
4.32440509e-02 4.71884195e-02 5.09130460e-02 5.45723558e-02
5.83936999e-02 6.26128392e-02 6.74655344e-02 7.31875464e-02
8.00146360e-02 8.81825640e-02 9.79270913e-02 1.09483979e-01
1.23088987e-01 1.38977877e-01 1.57386409e-01 1.78550345e-01
2.02705445e-01 2.30087470e-01 2.60932180e-01 2.95475338e-01
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
1aacb1d.png#pic_center)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-S8LAlANM-1712774949676)]