概率论基础知识(一)概率论基本概念,金三银四大厂面经总结

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
img

正文

C

A∪ (B∪ C) = (A∪ B) ∪ C

A∪(B∪C)=(A∪B)∪C

A

(

B

C

)

=

(

A

B

)

C

A ∩ (B ∩ C)=(A ∩ B) ∩ C

A∩(B∩C)=(A∩B)∩C
3、分配律:

A

(

B

C

)

=

(

A

B

)

(

A

C

)

A∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C)

A∪(B∩C)=(A∪B)∩(A∪C)

A

(

B

C

)

=

(

A

B

)

(

A

C

)

A ∩ (B∪C) = (A ∩ B) ∪ (A ∩ C)

A∩(B∪C)=(A∩B)∪(A∩C)

A

(

B

C

)

=

(

A

B

)

(

A

C

)

A ∩ (B - C) = (A ∩ B) - (A ∩ C)

A∩(B−C)=(A∩B)−(A∩C)
4、德摩根律(对偶律):

A

B

=

A

B

\overline{A ∪ B} = \overline{A} ∩ \overline{B}

A∪B=A∩B

A

B

=

A

B

\overline{A ∩ B} = \overline{A} ∪ \overline{B}

A∩B=A∪B
常用结论:

A

A

=

Φ

A\overline{A} = Φ

AA=Φ;

A

A

=

Ω

A∪\overline{A} = Ω

A∪A=Ω;

A

B

=

A

B

A

B

=

(

A

B

)

(

B

A

)

A

B

A ∪ B = A+ B − AB = (A − B) + (B − A) + AB

A∪B=A+B−AB=(A−B)+(B−A)+AB


1.2 频率与概率
频率

定义:在相同条件下,进行n次试验,在这n次试验中,事件A发生的次数,称为事件A发生的频数,比值:f = 频数/试验次数,称为事件A发生的频率。
基本性质:
(1)0 <= f <= 1 ;
(2)f(Ω) = 1;
(3)两两互不相融事件的可列可加性。
稳定性:当试验重复次数很大时,频率趋于稳定,可以用来表征事件A发生可能性的大小。

概率

定义: 设E是随机试验,样本空间为Ω,对于E的每一个事件A赋予一个实数,记为P(A),称为A的概率。
性质:
(1)非负性 0 =< P(A) <= 1;
(2)正则性 P(Ω) = 1;
(3)可列可加性 若有互不相容的事件:

A

1

,

A

2

,

A

3

,

.

.

.

A_1, A_2, A_3, …

A1​,A2​,A3​,…,

\quad\quad

P

(

A

j

)

=

P

(

A

j

)

P(∪A_j) = ∑ P(A_j)

P(∪Aj​)=∑P(Aj​)


1.3 等可能概型(古典概型)

设E是一个试验,满足:(1)只有有限多个样本点;(2)每个样本点发生的可能性相同(等可能性)。
典型例子:抛硬币
长期实践的发现:“概率很小的事件在一次试验中几乎是不发生”(称之为实际推理原理)

排列
排列:从n个不同元素中,任取m(m ≤ n,m与n均为自然数)个元素按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。
排列数:

A

n

m

=

n

(

n

1

)

(

n

2

)

(

n

m

1

)

=

n

!

(

n

m

)

!

A_n^m = n(n-1)(n-2)……(n-m+1) = {n!\over(n-m)!}

Anm​=n(n−1)(n−2)……(n−m+1)=(n−m)!n!​
组合
组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合数:

C

n

m

=

A

(

n

,

m

)

m

!

C_n^m = {A(n,m) \over m!}

Cnm​=m!A(n,m)​
公式:

C

n

m

=

C

n

n

m

C_n^m = C_n^{n-m}

Cnm​=Cnn−m​

C

n

m

C

n

m

1

=

C

n

1

m

C_n^m + C_n^{m-1} = C_{n+1}^m

Cnm​+Cnm−1​=Cn+1m​

C

n

0

C

n

1

.

.

.

C

n

n

=

2

n

=

(

1

1

)

n

C_n^0 + C_n^1 + … + C_n^n = 2^n = (1 + 1)^n

Cn0​+Cn1​+…+Cnn​=2n=(1+1)n

例1:
袋子中有a个黑球,b个白球,先一只只地摸出来,求:第k次摸到黑球的概率(1<= k <= a+b)
解法1:(排列)
思路:
样本空间为a+b个球的全排列,有利场合为第k个球确定为黑球,有a种可能,然后剩下a+b-1个球随机排列。
样本空间:(a+b)!
有利场合:a×(a+b-1)!
故:

P

=

a

×

(

a

b

1

)

!

(

a

b

)

!

=

a

a

b

P = {a×(a+b-1)! \over (a+b)!} = {a \over a+b}

P=(a+b)!a×(a+b−1)!​=a+ba​
解法2:(组合)
思路:
样本空间为从a+b个格子中选取a个放置黑球,其余一定放白球,故为

C

a

b

a

C^a_{a+b}

Ca+ba​;有利场合为第k个确定放置黑球,从剩下a+b-1个格子中选取a-1个格子放置剩下的黑球,其余放白球,故为

C

a

b

1

a

1

C^{a-1}_{a+b-1}

Ca+b−1a−1​。
样本空间:

C

a

b

a

C^a_{a+b}

Ca+ba​
有利场合:

C

a

b

1

a

1

C^{a-1}_{a+b-1}

Ca+b−1a−1​
故:

P

=

C

a

b

1

a

1

C

a

b

a

=

a

a

b

P = {C^{a-1}_{a+b-1} \over C^a_{a+b}} = {a \over a+b}

P=Ca+ba​Ca+b−1a−1​​=a+ba​
PS:这个例子就是抽签模型

例2:
设有n个球,每个都可以以同样的概率

1

n

1\over n

n1​落到N个格子的每一个格子中(N>=n),求:
(1)某指定的n个格子中各有一个球的概率P(A);
(2)任何n个格子中各有一个球的概率P(B);
解:
样本空间:

N

n

N^n

Nn

P

(

A

)

=

n

!

N

n

P(A) = {n! \over N^n}

P(A)=Nnn!​

P

(

A

)

=

C

N

n

  


  

n

!

N

n

=

N

!

N

n

  


  

(

N

n

)

!

P(A) = {C^n_N ; · ; n! \over N^n} = {N! \over N^n ; · ; (N-n)! }

P(A)=NnCNn​⋅n!​=Nn⋅(N−n)!N!​
PS:这个模型可用于计算具有相同生日的人的概率


1.4 条件概率

(1)条件概率:
设有两个事件A和B,

P

(

A

)

0

P(A)\neq0

P(A)̸​=0,在已知A发生的条件下B发生的概率记为:

P

(

B

A

)

=

P

(

A

B

)

P

(

A

)

P(B|A) = {P(AB) \over P(A)}

P(B∣A)=P(A)P(AB)​;满足概率的三个基本性质。
乘法公式:

P

(

A

B

)

=

P

(

A

)

P

(

B

A

)

P(AB) = P(A)P(B|A)

P(AB)=P(A)P(B∣A)
(2)全概率公式:

B

1

,

.

.

.

,

B

i

,

.

.

.

,

B

n

B1, … ,Bi, … , Bn

B1,…,Bi,…,Bn是

Ω

\Omega

Ω的一个划分(完备事件组),

B

1

B

2

.

.

.

B

n

=

Ω

,

B

i

B

j

=

,

i

j

,

P

(

B

i

)

>

0

B_1 \bigcup B_2 \bigcup … \bigcup B_n = \Omega, B_i \bigcap B_j = \emptyset, i \neq j, P(B_i) > 0

B1​⋃B2​⋃…⋃Bn​=Ω,Bi​⋂Bj​=∅,i̸​=j,P(Bi​)>0, 其中 i=1, 2, 3, …,得到:
全概率公式:

P

(

A

)

=

P

(

A

Ω

)

=

P

(

A

(

B

1

B

2

.

.

.

B

n

)

)

=

P

(

A

B

1

A

B

2

.

.

.

A

B

n

)

=

i

=

1

n

P

(

A

B

i

)

=

i

=

1

n

P

(

B

i

)

P

(

A

B

i

)

P(A) = P(A\Omega) = P(A\bigcap(B_1 \bigcup B_2 \bigcup … \bigcup B_n)) = P(AB_1 \bigcup AB_2… \bigcup AB_n) = \sum_{i=1}^n {P(AB_i)} = \sum_{i=1}^n P(B_i)P(A|B_i)

P(A)=P(AΩ)=P(A⋂(B1​⋃B2​⋃…⋃Bn​))=P(AB1​⋃AB2​…⋃ABn​)=∑i=1n​P(ABi​)=∑i=1n​P(Bi​)P(A∣Bi​)
PS:把一个要求的事件(

Ω

\Omega

Ω)分解成若干个互不相容的事件(

B

i

B_i

Bi​)。
(3)贝叶斯公式:
贝叶斯公式:

P

(

B

i

A

)

=

P

(

B

i

A

)

P

(

A

)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

P(AB) = P(A)P(B|A)

P(AB)=P(A)P(B∣A)
(2)全概率公式:

B

1

,

.

.

.

,

B

i

,

.

.

.

,

B

n

B1, … ,Bi, … , Bn

B1,…,Bi,…,Bn是

Ω

\Omega

Ω的一个划分(完备事件组),

B

1

B

2

.

.

.

B

n

=

Ω

,

B

i

B

j

=

,

i

j

,

P

(

B

i

)

>

0

B_1 \bigcup B_2 \bigcup … \bigcup B_n = \Omega, B_i \bigcap B_j = \emptyset, i \neq j, P(B_i) > 0

B1​⋃B2​⋃…⋃Bn​=Ω,Bi​⋂Bj​=∅,i̸​=j,P(Bi​)>0, 其中 i=1, 2, 3, …,得到:
全概率公式:

P

(

A

)

=

P

(

A

Ω

)

=

P

(

A

(

B

1

B

2

.

.

.

B

n

)

)

=

P

(

A

B

1

A

B

2

.

.

.

A

B

n

)

=

i

=

1

n

P

(

A

B

i

)

=

i

=

1

n

P

(

B

i

)

P

(

A

B

i

)

P(A) = P(A\Omega) = P(A\bigcap(B_1 \bigcup B_2 \bigcup … \bigcup B_n)) = P(AB_1 \bigcup AB_2… \bigcup AB_n) = \sum_{i=1}^n {P(AB_i)} = \sum_{i=1}^n P(B_i)P(A|B_i)

P(A)=P(AΩ)=P(A⋂(B1​⋃B2​⋃…⋃Bn​))=P(AB1​⋃AB2​…⋃ABn​)=∑i=1n​P(ABi​)=∑i=1n​P(Bi​)P(A∣Bi​)
PS:把一个要求的事件(

Ω

\Omega

Ω)分解成若干个互不相容的事件(

B

i

B_i

Bi​)。
(3)贝叶斯公式:
贝叶斯公式:

P

(

B

i

A

)

=

P

(

B

i

A

)

P

(

A

)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
[外链图片转存中…(img-U6Dfzzth-1713568102469)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值