哈希表:哈希函数的构造和处理冲突的方法,精心整理

本文介绍了哈希函数的几种构造方法,如平方取中法、折叠法、除留余数法、随机数法,以及开放定址法中的线性探测、二次探测和伪随机数探测。重点讨论了这些方法在处理关键字分布、冲突管理和Python开发中的实际应用。
摘要由CSDN通过智能技术生成

8 1 4 1 9 3 5 5

对全体分析我们发现,第1,2 位都是“8 1”,第3位只可能取1、2、3或4,第8位只可能取2、5或7,因此这四位不可取。因此可以取剩余四位中的任意两位作为哈希地址。

平方取中法

定义:关键字平方后取部分位,取的位数由表长决定(如:表长1000,则取3位)

优点:一个数在平方后中间的几位数和数的每一位都相关,由此使随机分布的关键字得到的哈希函数值也是随机的。

例如,取关键字平方值的第二到第四位:

关键字 关键字平方值 哈希地址

0100 0010000 010

1200 1440000 440

2061 4310541 310

折叠法

定义:将关键字分为若干部分相加或相乘得到哈希地址。

适用情况:关键字位数很多,且每一位上数字分布大致均匀时,可以采用折叠法得到哈希地址。

例如关键字673286,将其分割成673和286两部分相加的数作为哈希地址。

移位叠加:将分割后的的每一部分最低位对齐,然后相加;

间界叠加:将分割后的其中一部分进行倒置。以上述例子为例,变化为673和682相加。

除留余数法(最简单,最常用)

定义: 取关键字被某个不大于哈希表表长m的书p出后所得的余数作为哈希地址。

随机数法

定义:适用随机数

适用情况: 关键字长度不等

▶选择哈希函数构造方法要考虑的因素有:

  1. 计算哈希函数所需要的时间

  2. 关键字的长度

  3. 哈希表的大小

  4. 关键字的分布情况

  5. 记录的查找频率

处理冲突的方法

开放定址法

定义: Hi = (H(key)+di) MOD m , i=1,2,3…,k (k<=m-1)

其中:Hi 为新的哈希地址,H(key) 为哈希函数,m 为哈希表表长,di 为增量序列。

di可以有以下三种取法:

(1)线性探测再散列:di=1,2,3,…,m-1

(2)二次探测再散列:di=1,-1,4,-4,9,…,-(k*k)

(3)伪随机数序列:di=伪随机数序列

例如:

长度为11的哈希表 ( 哈希函数 H(key)=key MOD 11 ) 中已填有关键字为60,17,29的记录,现有第四个关键字为38的记录,哈希地址为5,发生冲突。

(1)若采用线性探测再散列处理后得到下一个地址为6,仍冲突;再求下一个地址为7,仍冲突;直到哈希地址为8位置为“空”,处理冲突结束。

(2)若采用二次探测再散列,则哈希地址最终为4。

(3)类似的得到伪随机探测再散列的哈希地址。

线性探测再散列:

0 1 2 3 4 5 6 7 8 9 10

60 17 29 38

二次探测再散列:

0 1 2 3 4 5 6 7 8 9 10

38 60 17 29

伪随机探测再散列:伪随机数列9,…

0 1 2 3 4 5 6 7 8 9 10

38 60 17 29

上述例子中,在5,6,7,8位置都有了记录后,若下一个关键字的哈希地址为5,6,7,8的记录都会填入过8的位置,这种在处理冲突过程中发生的两个第一个哈希地址不同的记录争夺同一个后继哈希地址的现象称为“二次聚集”。

另一方面,用线性探测处理冲突时,只要哈希表未满,总能找到一个不冲突的哈希地址。

//线性探测再散列

int C[10];//此处定义初始化的哈希表C的初始值为0

int LinearDetect(int f) //f为关键字第一个哈希地址

{

while(C[f]!=0) //有冲突

++f;

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

-blog.csdnimg.cn/f5aeb4050ab547cf90b1a028d1aacb1d.png#pic_center)

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-HZ9qv5yB-1712789600565)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值