先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注go)
正文
1.代理模型简介
一次看文献的时候,看到一篇关于代理模型的文章,讲解的十分细致,深受启发,醍醐灌顶,给大家分享一下学习心得。
1.1代理模型的由来
相信很多人对于代理模型并不陌生,但很少有人说明代理模型是如何提出的。
提到代理模型,肯定和优化分不开,在航空航天领域,应用最广泛地就是多学科设计优化,包括力学、材料学、空气动力学等等,这就会存在大量的设计变量以及状态变量,与此同时各个学科之间还有可能存在复杂的耦合关系,这就导致在优化时存在数据采集困难,耗时长,优化难度大的问题,于是代理模型的方法应运而生,并逐渐成为多学科优化的重要分支和关键技术。
1.2什么是代理模型
代理模型通常是指在优化设计中可替代比较复杂和费时的数值分析的近似数学模型,也可称为响应面模型或者是近似模型,比如飞行器的优化设计,就是典型的复杂和费时。此外在做优化设计时,难免会碰见一些难以用直观的函数表达式去表达目标函数,这时也可用代理模型来替代目标函数。使用代理模型可以极大的提高优化设计效率以及降低优化的难度。
1.3代理模型的类别
目前代理模型通常有多项式响应面(RSM)、Kriging模型、径向基函数(RBF)、神经网络(NN)、支持向量机(SVR)、多变量插值和回归(MIR)、多项式混沌展开(PCE)等等。在这里简单介绍一下Kriging模型。
Kriging代理模型可通过回归模型与随机模型进行构造,其一般形式为:
式中, β\beta 为回归模型的回归系数, f(x)f\left( x \right) 为关于x 的多项式, z(x)z\left( x \right) 为随机项,其协方差矩阵为:
式中, R(θ,xi,xj)R\left( \theta,xi,xj\right) 为样本点 xixi 与 xjxj 的空间相关函数。
2.如何构建代理模型
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**