OpenCV3基础——几种基本的图像处理_opencv确认图像文件名称是否正确

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注go)
img

正文

Mat类是用于保存图像以及其他矩阵数据的数据结构,默认情况下其尺寸为0。我们也可以指定其初始尺寸,比如定义一个Mat类对象,就要写cv::Mat pic(320,640,cv::Scalar(100));,Mat类是OpenCV里十分重要,内容有很多,我们这里需要用到的关于Mat的其实就是简单的这样一句代码:Mat img=imread(“1.jpg”);,所以我就不在多讲了。

3、图像的载入:imread()函数

imread()函数是用于读取文件中的图片到OpenCV中。可以在OpenCV官方文档中查到它的原形,如下:

Mat imread(const string& filename, intflags=1);

第一个参数,const string&类型的filename,填我们需要载入的图片路径名,在Windows操作系统下,OpenCV的imread函数支持如下类型的图像载入。

第二个参数,int类型的flags,为载入标识,他指定一个加载图像的颜色类型【这个内容有些生涩难理解,故不多赘述】。

4、imshow()函数

imshow()函数用于在指定的窗口中显示一幅图像,函数原型如下。

void imshow(const string& winname, InputArray mat);

第一个参数,const string&类型的winname,填需要显示的窗口标识名称。

第二个参数,InputArray类型的mat,填需要显示的图像。【很多时候,遇到函数原型中的InputArray/OutputArray类型,我们把它简单地当做Mat类型即可。因为它的定义有些难理解,而且源代码略显冗长,所以不过多赘述】

二、图像腐蚀和膨胀

腐蚀,即用图像中的暗色部分“腐蚀”掉图像中的高亮部分。代码如下:

#include<opencv2\highgui\highgui.hpp> //OpenCV highgui模块头文件
#include<opencv2\imgproc\imgproc.hpp> //OpenCV 图像处理头文件
using namespace cv; //包含cv命名空间

int main(){
//载入图片
Mat img = imread(“1.jpg”);
//显示原图
imshow(“【原图】腐蚀操作”, img);
//进行腐蚀操作
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
Mat dstimg;
erode(img, dstimg, element);
//显示效果图
imshow(“【效果图】腐蚀操作”, dstimg);
waitKey(0);
return 0;
}

程序首先依然是载入和显示一幅图像,然后定义一个Mat类型的变量来获得getStructuringElement函数的返回值,而getStructuringElement函数的返回值为指定形状和尺寸的结构元素(内核矩阵)。参数准备完毕,接着便可以调用erode函数进行图像腐蚀操作,然后调用imshow函数进行显示。

下面对getStructuringElement函数进行简单的讲述:

第一个参数,内核的形状(一般有下面三种:矩形:MORPH_RECT;交叉形:MORPH_CROSS;椭圆形:MORPH_ELLIPSE)

第二个参数,内核的大小(上面的代码,表示的就是15*15的正方形内核)

效果图如下(原图都和一中的原图一样,故不再显示):

膨胀,和腐蚀相反,从图像直观来看,就是将图像光亮部分放大,黑暗部分缩小。代码如下:

#include<opencv2\highgui\highgui.hpp> //OpenCV highgui模块头文件
#include<opencv2\imgproc\imgproc.hpp> //OpenCV 图像处理头文件
using namespace cv; //包含cv命名空间

int main(){
//载入图片
Mat img = imread(“1.jpg”);
//显示原图
imshow(“【原图】膨胀操作”, img);
//进行膨胀操作
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
Mat dstimg;
dilate(img, dstimg, element);
//显示效果图
imshow(“【效果图】膨胀操作”, dstimg);
waitKey(0);
return 0;
}

和腐蚀的代码的区别就只在于调用的函数不同,膨胀调用的是dilate函数。

效果图如下:

三、图像模糊

模糊,对图像进行均值滤波处理,然后就把图像模糊了……代码如下:

#include<opencv2\highgui\highgui.hpp>
#include<opencv2\imgproc\imgproc.hpp>
using namespace cv;

int main(){
//载入原图
Mat img = imread(“1.jpg”);
//显示原图
imshow(“【原图】均值滤波”, img);
//进行均值滤波操作
Mat dstimg;
blur(img, dstimg, Size(7, 7));
//显示效果图
imshow(“【效果图】均值滤波”, dstimg);
waitKey(0);
return 0;
}

blur函数的第三个参数表示的是内核的大小,代码中的意思是像素长宽均为7的一个内核。

效果图如下:

四、canny边缘检测

这个操作会在我们最终要实现的汽车车牌识别中会出现。

载入图像,并将其转成灰度图,再用blur函数进行图像模糊以降噪,然后用canny函数进行边缘检测,最后进行显示。代码如下:

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
[外链图片转存中…(img-qXj1GmF7-1713341092517)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值