- 博客(7)
- 收藏
- 关注
原创 MWORKS三维曲面图绘制教程:从代码到原理
数据生成部分:使用其他函数或实际数据替换 peaks 函数网格密度:调整 meshgrid 的步长参数颜色映射:使用 colormap 函数更改颜色方案视角设置:调整 view 函数的参数光照效果:尝试不同的光照模型 (如 phong)希望这篇教程能帮助你掌握 MATLAB 绘制三维曲面图的基本方法。通过调整参数和添加更多的图形元素,你可以创建出更加专业和美观的三维可视化效果。
2025-05-15 10:00:11
916
原创 Python 绘制柱状图:从基础到实战
柱状图是一种简单而有效的数据可视化工具,通过 Python 的matplotlib和seaborn库,我们可以轻松地绘制出各种类型的柱状图,包括简单柱状图、分组柱状图等。同时,我们还可以对柱状图进行各种定制,使其更加美观和符合需求。希望本文能帮助你掌握柱状图的绘制和定制方法,在数据分析和展示中发挥更大的作用。
2025-04-10 08:07:29
984
原创 利用 Python 绘制箱线图:用途、代码详解与实际应用
箱线图是一种简单而有效的数据可视化工具,能够帮助我们快速了解数据的分布情况、检测异常值和比较多组数据。通过 Python 的matplotlib和seaborn库,我们可以轻松地绘制出高质量的箱线图。在实际应用中,我们可以根据具体需求对箱线图进行定制,例如调整颜色、添加标签等,以更好地展示数据信息。同时,我们也应该认识到箱线图的局限性,结合其他可视化方法和统计分析手段,全面深入地分析数据。希望本文能帮助你掌握箱线图的绘制和解读方法,为你的数据分析工作提供有力支持。
2025-04-10 08:06:26
645
原创 利用 Python 绘制和弦图:用途、代码详解与应用场景(第四天)
和弦图是一种强大而直观的数据可视化工具,能够有效地展示多个实体之间的关联关系和流量。通过 Python 的plotly库,我们可以轻松地创建高质量的和弦图。在实际应用中,我们可以根据具体需求调整数据和图表的参数,如颜色比例尺、线条样式等,以获得最佳的可视化效果。同时,我们需要结合具体的业务场景和数据特点,深入解读和弦图所传达的信息,为决策提供有力支持。
2025-04-02 21:57:08
869
原创 用 Python 绘制热力图(Heatmap)详解:从数据到可视化全流程(第三天)
通过调整参数和组合其他图表类型(如折线图叠加),可以创造出更丰富的可视化效果。建议读者根据实际数据特点灵活运用。热力图是数据可视化中的 "信息浓缩器",通过颜色编码实现多维度数据的高效传达。
2025-03-26 17:44:05
3306
原创 《利用 Python 绘制雷达图:详细教程》(第二天)
雷达图可以帮助我们直观地比较不同对象在多个维度上的表现,是一种非常有用的数据可视化工具。希望这篇博客对你有所帮助!
2025-03-20 09:50:46
394
原创 用Python绘制专业气泡图:逐行代码详解(学画图第一天)
本文将通过的方式,手把手教你用Python的Matplotlib库绘制商业级气泡图。每个代码块都包含详细的功能解析,即使零基础也能轻松掌握!
2025-03-14 22:46:55
1100
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人