一、热力图的核心用途
热力图(Heatmap)是一种通过颜色深浅表示数据密度或数值大小的可视化工具,主要应用场景包括:
- 数据矩阵的模式识别(如相关性分析)
- 用户行为热点分析(如网页点击热力图)
- 地理区域数据分布(如疫情病例密度)
- 时间序列的周期性变化(如电商订单时段分布)
二、技术准备
1. 安装必要库
pip install matplotlib seaborn pandas numpy
2. 数据准备
示例 1:矩阵型数据(相关性分析)
import numpy as np
import pandas as pd
# 生成随机数据(10个样本,5个特征)
data = pd.DataFrame(np.random.rand(10,5), columns=['A','B','C','D','E'])
# 计算相关系数矩阵
corr_matrix = data.corr()
print(corr_matrix.head())
示例 2:地理型数据(区域销售数据)
geo_data = pd.DataFrame({
'城市': ['北京','上海','广州','深圳','杭州'],
'纬度': [39.90, 31.23, 23.13, 22.54, 30.26],
'经度': [116.40, 121.47, 113.27, 114.05, 120.19],
'销售额': [150, 200, 180, 220, 160]
})
三、绘制热力图的完整代码(含详细注释)
方案一:使用 Seaborn 绘制矩阵热力图
import seaborn as sns
import matplotlib.pyplot as plt
# 创建画布
plt.figure(figsize=(10,8))
# 绘制热力图
sns.heatmap(
data=corr_matrix, # 输入数据矩阵
annot=True, # 显示数值标签
fmt=".2f", # 数值保留两位小数
cmap='coolwarm', # 颜色映射方案(冷暖对比)
linewidths=0.5, # 分隔线宽度
cbar_kws={'label': '相关系数'}, # 颜色条标签
annot_kws={'fontsize':12} # 标签字体大小
)
# 设置标题和坐标轴标签
plt.title('特征相关性热力图', fontsize=14)
plt.xlabel('特征', fontsize=12)
plt.ylabel('特征', fontsize=12)
# 优化布局
plt.tight_layout()
# 保存并显示
plt.savefig('correlation_heatmap.png', dpi=300)
plt.show()
方案二:使用 Matplotlib 绘制地理热力图
from mpl_toolkits.basemap import Basemap
# 创建地图投影
plt.figure(figsize=(12,8))
m = Basemap(
projection='merc', # 墨卡托投影
llcrnrlat=20, # 左下角纬度
urcrnrlat=40, # 右上角纬度
llcrnrlon=100, # 左下角经度
urcrnrlon=130, # 右上角经度
resolution='l' # 地图精度
)
# 绘制海岸线和国家边界
m.drawcoastlines()
m.drawcountries()
# 转换经纬度坐标
x, y = m(geo_data['经度'].tolist(), geo_data['纬度'].tolist())
# 绘制热力点
m.scatter(
x, y,
s=geo_data['销售额']*5, # 点大小与销售额成正比
c=geo_data['销售额'], # 颜色映射销售额
cmap='YlOrRd', # 黄-红渐变
alpha=0.6, # 透明度
edgecolors='w' # 白色边框
)
# 添加颜色条
plt.colorbar(label='销售额(万元)', shrink=0.8)
# 设置标题
plt.title('中国主要城市销售额分布热力图', fontsize=14)
# 保存并显示
plt.savefig('geo_heatmap.png', dpi=300)
plt.show()
四、关键参数解读
参数名 | 作用说明 | 常用值示例 |
---|---|---|
data | 输入数据矩阵 | pandas.DataFrame 或 numpy 数组 |
cmap | 颜色映射方案 | 'coolwarm', 'viridis', 'YlOrRd' |
annot | 是否显示数值标签 | True/False |
fmt | 数值显示格式 | '.2f'(两位小数) |
linewidths | 单元格边框宽度 | 0.5-1.0 |
alpha | 透明度控制(地理热力图) | 0.3-0.7 |
s | 点大小(地理热力图) | 数值数组 |
五、结果解读技巧
-
颜色梯度分析:
- 冷色调(蓝 / 绿)表示低数值区域
- 暖色调(红 / 黄)表示高数值区域
- 中间色表示中等数值
-
矩阵热力图:
- 对角线元素为 1(自相关)
- 越接近 1 的数值表示正相关性越强
- 越接近 - 1 的数值表示负相关性越强
-
地理热力图:
- 密集区域表示业务集中
- 颜色深浅反映数值大小
- 点大小体现第三维度数据
六、常见问题处理
-
数据标准化:
python
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() scaled_data = scaler.fit_transform(data)
-
处理 NaN 值:
python
data = data.fillna(0) # 填充0值 # 或 data = data.dropna() # 删除缺失行
-
调整颜色范围:
python
vmin=0, vmax=100 # 强制颜色范围
七、扩展应用
-
时间序列热力图:
python
# 示例:电商订单时段分布 time_data = pd.read_csv('order_data.csv', parse_dates=['order_time']) time_data['hour'] = time_data['order_time'].dt.hour pivot_table = time_data.pivot_table(index='hour', columns='dayofweek', aggfunc='size') sns.heatmap(pivot_table, cmap='Blues')
-
用户行为热力图:
python
# 示例:网页点击热区 click_data = pd.read_csv('click_log.csv') plt.figure(figsize=(12,8)) plt.hist2d(click_data['x'], click_data['y'], bins=50, cmap='Reds') plt.colorbar(label='点击次数')
八、总结
热力图是数据可视化中的 "信息浓缩器",通过颜色编码实现多维度数据的高效传达。掌握以下要点可提升图表质量:
- 选择合适的颜色映射方案(避免彩虹色系)
- 合理设置数值标签和边框
- 注意数据标准化和异常值处理
- 结合业务场景选择矩阵 / 地理 / 时间型热力图
通过调整参数和组合其他图表类型(如折线图叠加),可以创造出更丰富的可视化效果。建议读者根据实际数据特点灵活运用。