用 Python 绘制热力图(Heatmap)详解:从数据到可视化全流程(第三天)

一、热力图的核心用途

热力图(Heatmap)是一种通过颜色深浅表示数据密度或数值大小的可视化工具,主要应用场景包括:

  • 数据矩阵的模式识别(如相关性分析)
  • 用户行为热点分析(如网页点击热力图)
  • 地理区域数据分布(如疫情病例密度)
  • 时间序列的周期性变化(如电商订单时段分布)

二、技术准备

1. 安装必要库

pip install matplotlib seaborn pandas numpy

 2. 数据准备

示例 1:矩阵型数据(相关性分析)
import numpy as np
import pandas as pd

# 生成随机数据(10个样本,5个特征)
data = pd.DataFrame(np.random.rand(10,5), columns=['A','B','C','D','E'])
# 计算相关系数矩阵
corr_matrix = data.corr()
print(corr_matrix.head())
示例 2:地理型数据(区域销售数据)
geo_data = pd.DataFrame({
    '城市': ['北京','上海','广州','深圳','杭州'],
    '纬度': [39.90, 31.23, 23.13, 22.54, 30.26],
    '经度': [116.40, 121.47, 113.27, 114.05, 120.19],
    '销售额': [150, 200, 180, 220, 160]
})

三、绘制热力图的完整代码(含详细注释)

方案一:使用 Seaborn 绘制矩阵热力图

import seaborn as sns
import matplotlib.pyplot as plt

# 创建画布
plt.figure(figsize=(10,8))

# 绘制热力图
sns.heatmap(
    data=corr_matrix,         # 输入数据矩阵
    annot=True,               # 显示数值标签
    fmt=".2f",                # 数值保留两位小数
    cmap='coolwarm',          # 颜色映射方案(冷暖对比)
    linewidths=0.5,           # 分隔线宽度
    cbar_kws={'label': '相关系数'},  # 颜色条标签
    annot_kws={'fontsize':12}  # 标签字体大小
)

# 设置标题和坐标轴标签
plt.title('特征相关性热力图', fontsize=14)
plt.xlabel('特征', fontsize=12)
plt.ylabel('特征', fontsize=12)

# 优化布局
plt.tight_layout()

# 保存并显示
plt.savefig('correlation_heatmap.png', dpi=300)
plt.show()

方案二:使用 Matplotlib 绘制地理热力图

from mpl_toolkits.basemap import Basemap

# 创建地图投影
plt.figure(figsize=(12,8))
m = Basemap(
    projection='merc',        # 墨卡托投影
    llcrnrlat=20,            # 左下角纬度
    urcrnrlat=40,            # 右上角纬度
    llcrnrlon=100,           # 左下角经度
    urcrnrlon=130,           # 右上角经度
    resolution='l'           # 地图精度
)

# 绘制海岸线和国家边界
m.drawcoastlines()
m.drawcountries()

# 转换经纬度坐标
x, y = m(geo_data['经度'].tolist(), geo_data['纬度'].tolist())

# 绘制热力点
m.scatter(
    x, y,
    s=geo_data['销售额']*5,    # 点大小与销售额成正比
    c=geo_data['销售额'],     # 颜色映射销售额
    cmap='YlOrRd',           # 黄-红渐变
    alpha=0.6,               # 透明度
    edgecolors='w'           # 白色边框
)

# 添加颜色条
plt.colorbar(label='销售额(万元)', shrink=0.8)

# 设置标题
plt.title('中国主要城市销售额分布热力图', fontsize=14)

# 保存并显示
plt.savefig('geo_heatmap.png', dpi=300)
plt.show()

 四、关键参数解读

参数名作用说明常用值示例
data输入数据矩阵pandas.DataFrame 或 numpy 数组
cmap颜色映射方案'coolwarm', 'viridis', 'YlOrRd'
annot是否显示数值标签True/False
fmt数值显示格式'.2f'(两位小数)
linewidths单元格边框宽度0.5-1.0
alpha透明度控制(地理热力图)0.3-0.7
s点大小(地理热力图)数值数组

五、结果解读技巧

  1. 颜色梯度分析

    • 冷色调(蓝 / 绿)表示低数值区域
    • 暖色调(红 / 黄)表示高数值区域
    • 中间色表示中等数值
  2. 矩阵热力图

    • 对角线元素为 1(自相关)
    • 越接近 1 的数值表示正相关性越强
    • 越接近 - 1 的数值表示负相关性越强
  3. 地理热力图

    • 密集区域表示业务集中
    • 颜色深浅反映数值大小
    • 点大小体现第三维度数据

六、常见问题处理

  1. 数据标准化

    python

    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()
    scaled_data = scaler.fit_transform(data)
    
  2. 处理 NaN 值

    python

    data = data.fillna(0)  # 填充0值
    # 或
    data = data.dropna()  # 删除缺失行
    
  3. 调整颜色范围

    python

    vmin=0, vmax=100  # 强制颜色范围
    

七、扩展应用

  1. 时间序列热力图

    python

    # 示例:电商订单时段分布
    time_data = pd.read_csv('order_data.csv', parse_dates=['order_time'])
    time_data['hour'] = time_data['order_time'].dt.hour
    pivot_table = time_data.pivot_table(index='hour', columns='dayofweek', aggfunc='size')
    sns.heatmap(pivot_table, cmap='Blues')
    
  2. 用户行为热力图

    python

    # 示例:网页点击热区
    click_data = pd.read_csv('click_log.csv')
    plt.figure(figsize=(12,8))
    plt.hist2d(click_data['x'], click_data['y'], bins=50, cmap='Reds')
    plt.colorbar(label='点击次数')
    

    八、总结

热力图是数据可视化中的 "信息浓缩器",通过颜色编码实现多维度数据的高效传达。掌握以下要点可提升图表质量:

  1. 选择合适的颜色映射方案(避免彩虹色系)
  2. 合理设置数值标签和边框
  3. 注意数据标准化和异常值处理
  4. 结合业务场景选择矩阵 / 地理 / 时间型热力图

通过调整参数和组合其他图表类型(如折线图叠加),可以创造出更丰富的可视化效果。建议读者根据实际数据特点灵活运用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值