-
Returns true if there is a value for the given key in the cache.
-
@param key The key to check.
*/
public synchronized boolean contains(T key) {
return cache.containsKey(key);
}
/**
-
Returns the item in the cache for the given key or null if no such item exists.
-
@param key The key to check.
*/
@Nullable
public synchronized Y get(T key) {
return cache.get(key);
}
/**
-
Adds the given item to the cache with the given key and returns any previous entry for the
-
given key that may have already been in the cache.
-
If the size of the item is larger than the total cache size, the item will not be added to
-
the cache and instead {@link #onItemEvicted(Object, Object)} will be called synchronously with
-
the given key and item.
-
@param key The key to add the item at.
-
@param item The item to add.
*/
public synchronized Y put(T key, Y item) {
final int itemSize = getSize(item);
if (itemSize >= maxSize) {
onItemEvicted(key, item);
return null;
}
final Y result = cache.put(key, item);
if (item != null) {
currentSize += getSize(item);
}
if (result != null) {
// TODO: should we call onItemEvicted here?
currentSize -= getSize(result);
}
evict();
return result;
}
/**
-
Removes the item at the given key and returns the removed item if present, and null otherwise.
-
@param key The key to remove the item at.
*/
@Nullable
public synchronized Y remove(T key) {
final Y value = cache.remove(key);
if (value != null) {
currentSize -= getSize(value);
}
return value;
}
/**
- Clears all items in the cache.
*/
public void clearMemory() {
trimToSize(0);
}
/**
-
Removes the least recently used items from the cache until the current size is less than the
-
given size.
-
@param size The size the cache should be less than.
*/
protected synchronized void trimToSize(int size) {
Map.Entry<T, Y> last;
while (currentSize > size) {
last = cache.entrySet().iterator().next();
final Y toRemove = last.getValue();
currentSize -= getSize(toRemove);
final T key = last.getKey();
cache.remove(key);
onItemEvicted(key, toRemove);
}
}
private void evict() {
trimToSize(maxSize);
}
}
LruCache采用的集合是LinkedHashMap,这个集合是HashMap的基础上增加了 数据链表的功能,可以看到下面这个构造函数,第一个是初始容量100, 第二个是碰撞因子0.75(即真实容量到达总容量的75%就开始扩容),第三个是链表顺序是否按访问顺序,关于这个容器的代码分析我们放在下一篇文章,在这里我们只需要知道这个集合能记录到你访问数据的次序,最近的访问的会放在链表的前面
private final LinkedHashMap<T, Y> cache = new LinkedHashMap<>(100, 0.75f, true);
initialMaxSize:初始大小,maxSize:最大,currentSize:当前 三个成员变量,创建时this.initialMaxSize 和this.maxSize 一样。 注意setSizeMultiplier函数的作用是传入一个变化乘数,改变当前的最大容量
private final int initialMaxSize;
private int maxSize;
private int currentSize = 0;
public LruCache(int size) {
this.initialMaxSize = size;
this.maxSize = size;
}
public synchronized void setSizeMultiplier(float multiplier) {
if (multiplier < 0) {
throw new IllegalArgumentException(“Multiplier must be >= 0”);
}
maxSize = Math.round(initialMaxSize * multiplier);
evict();
}
evict意思是驱逐,就是把数据清除出缓存,把容量缩减到小于等于maxSize,while循环,处理当前大小大于入参的情况,取出链表中的一个,获取其value的大小,清除,更新当前容器容量,直到符合要求
protected synchronized void trimToSize(int size) {
Map.Entry<T, Y> last;
while (currentSize > size) {
last = cache.entrySet().iterator().next();
final Y toRemove = last.getValue();
currentSize -= getSize(toRemove);
final T key = last.getKey();
cache.remove(key);
onItemEvicted(key, toRemove);
}
}
private void evict() {
trimToSize(maxSize);
}
获取item的大小,默认现在是1 。比如要实现一个Bitmap 缓存是需要返回大小的,缓存的大小是取决于所有bitmap的总大小和,而不是总个数
protected int getSize(Y item) {
return 1;
}
一个清除元素发生的回调,让LruCache 的继承者选择自己做要的事
protected void onItemEvicted(T key, Y item) {
// optional override
}
常规操作不解释
public synchronized int getMaxSize() {
return maxSize;
}
public synchronized int getCurrentSize() {
return currentSize;
}
public synchronized boolean contains(T key) {
return cache.containsKey(key);
}
@Nullable
public synchronized Y get(T key) {
return cache.get(key);
}
put操作,首先获取待加入的item 大小,如果大于缓存最大容量,就不放进去,直接调用onItemEvicte. 小于缓存最大容量,执行放入,item不为空,更新缓存当前大小。 执行放入的结果result就是说如果之前在容器内key存在,会执行替换value的操作,这时候result!=null,需要把替换出来的item的大小减去, 作者弄了个//TODO,不知道这里是否加上onItemEvicted 的回调,个人感觉应该加上,毕竟数据被清除缓存了,通知下,怎么处理交给继承者。 最后 evict(),因为单个待处理的item大小小于缓存最大容量,但是加入后,有可能超出,这里加个维护容量的代码
public synchronized Y put(T key, Y item) {
final int itemSize = getSize(item);
if (itemSize >= maxSize) {
onItemEvicted(key, item);
return null;
}
final Y result = cache.put(key, item);
if (item != null) {
currentSize += getSize(item);
}
if (result != null) {
// TODO: should we call onItemEvicted here?
currentSize -= getSize(result);
}
evict();
return result;
}
清除key出缓存,常规操作,维护当前缓存大小
public synchronized Y remove(T key) {
final Y value = cache.remove(key);
if (value != null) {
currentSize -= getSize(value);
}
return value;
}
让缓存容量小于等于0,起到clearMemory的作用
public void clearMemory() {
trimToSize(0);
最后
这里附上上述的技术体系图相关的几十套腾讯、头条、阿里、美团等公司2021年的面试题,把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分。
相信它会给大家带来很多收获:
当程序员容易,当一个优秀的程序员是需要不断学习的,从初级程序员到高级程序员,从初级架构师到资深架构师,或者走向管理,从技术经理到技术总监,每个阶段都需要掌握不同的能力。早早确定自己的职业方向,才能在工作和能力提升中甩开同龄人。
- 无论你现在水平怎么样一定要 持续学习 没有鸡汤,别人看起来的毫不费力,其实费了很大力,这四个字就是我的建议!!!
- 我希望每一个努力生活的IT工程师,都会得到自己想要的,因为我们很辛苦,我们应得的。
当我们在抱怨环境,抱怨怀才不遇的时候,没有别的原因,一定是你做的还不够好!
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分。
相信它会给大家带来很多收获:
[外链图片转存中…(img-v8vgO3Ko-1715723931674)]
当程序员容易,当一个优秀的程序员是需要不断学习的,从初级程序员到高级程序员,从初级架构师到资深架构师,或者走向管理,从技术经理到技术总监,每个阶段都需要掌握不同的能力。早早确定自己的职业方向,才能在工作和能力提升中甩开同龄人。
- 无论你现在水平怎么样一定要 持续学习 没有鸡汤,别人看起来的毫不费力,其实费了很大力,这四个字就是我的建议!!!
- 我希望每一个努力生活的IT工程师,都会得到自己想要的,因为我们很辛苦,我们应得的。
当我们在抱怨环境,抱怨怀才不遇的时候,没有别的原因,一定是你做的还不够好!
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!