Glide全方位,不是问源码那么简单

对于一般App来说,Glide完全够用,而对于图片需求比较大的App,为了防止加载大量图片导致OOM,Fresco 会更合适一些。并不是说用Glide会导致OOM,Glide默认用的内存缓存是LruCache,内存不会一直往上涨。

二、假如让你自己写个图片加载框架,你会考虑哪些问题?


首先,梳理一下必要的图片加载框架的需求:

  • 异步加载:线程池
  • 切换线程:Handler,没有争议吧
  • 缓存:LruCache、DiskLruCache
  • 防止OOM:软引用、LruCache、图片压缩、Bitmap像素存储位置
  • 内存泄露:注意ImageView的正确引用,生命周期管理
  • 列表滑动加载的问题:加载错乱、队满任务过多问题

当然,还有一些不是必要的需求,例如加载动画等。

2.1 异步加载:

线程池,多少个?

缓存一般有三级,内存缓存、硬盘、网络。

由于网络会阻塞,所以读内存和硬盘可以放在一个线程池,网络需要另外一个线程池,网络也可以采用Okhttp内置的线程池。

读硬盘和读网络需要放在不同的线程池中处理,所以用两个线程池比较合适。

Glide 必然也需要多个线程池,看下源码是不是这样

public final class GlideBuilder {

private GlideExecutor sourceExecutor; //加载源文件的线程池,包括网络加载

private GlideExecutor diskCacheExecutor; //加载硬盘缓存的线程池

private GlideExecutor animationExecutor; //动画线程池

Glide使用了三个线程池,不考虑动画的话就是两个。

2.2 切换线程:

图片异步加载成功,需要在主线程去更新ImageView,

无论是RxJava、EventBus,还是Glide,只要是想从子线程切换到Android主线程,都离不开Handler。

看下Glide 相关源码:

class EngineJob implements DecodeJob.Callback,Poolable {

private static final EngineResourceFactory DEFAULT_FACTORY = new EngineResourceFactory();

//创建Handler

private static final Handler MAIN_THREAD_HANDLER =

new Handler(Looper.getMainLooper(), new MainThreadCallback());

问RxJava是完全用Java语言写的,那怎么实现从子线程切换到Android主线程的? 依然有很多3-6年的开发答不上来这个很基础的问题,而且只要是这个问题回答不出来的,接下来有关于原理的问题,基本都答不上来。

有不少工作了很多年的Android开发不知道鸿洋、郭霖、玉刚说,不知道掘金是个啥玩意,内心估计会想是不是还有叫掘银掘铁的(我不知道有没有)。

我想表达的是,干这一行,真的是需要有对技术的热情,不断学习,不怕别人比你优秀,就怕比你优秀的人比你还努力,而你却不知道

2.3 缓存

我们常说的图片三级缓存:内存缓存、硬盘缓存、网络。

2.3.1 内存缓存

一般都是用LruCache

Glide 默认内存缓存用的也是LruCache,只不过并没有用Android SDK中的LruCache,不过内部同样是基于LinkHashMap,所以原理是一样的。

// -> GlideBuilder#build

if (memoryCache == null) {

memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());

}

既然说到LruCache ,必须要了解一下LruCache的特点和源码:

为什么用LruCache?

LruCache 采用最近最少使用算法,设定一个缓存大小,当缓存达到这个大小之后,会将最老的数据移除,避免图片占用内存过大导致OOM。

LruCache 源码分析

public class LruCache<K, V> {

// 数据最终存在 LinkedHashMap 中

private final LinkedHashMap<K, V> map;

public LruCache(int maxSize) {

if (maxSize <= 0) {

throw new IllegalArgumentException(“maxSize <= 0”);

}

this.maxSize = maxSize;

// 创建一个LinkedHashMap,accessOrder 传true

this.map = new LinkedHashMap<K, V>(0, 0.75f, true);

}

LruCache 构造方法里创建一个LinkedHashMap,accessOrder 参数传true,表示按照访问顺序排序,数据存储基于LinkedHashMap。

先看看LinkedHashMap 的原理吧

LinkedHashMap 继承 HashMap,在 HashMap 的基础上进行扩展,put 方法并没有重写,说明LinkedHashMap遵循HashMap的数组加链表的结构

LinkedHashMap重写了 createEntry 方法。

看下HashMap 的 createEntry 方法

void createEntry(int hash, K key, V value, int bucketIndex) {

HashMapEntry<K,V> e = table[bucketIndex];

table[bucketIndex] = new HashMapEntry<>(hash, key, value, e);

size++;

}

HashMap的数组里面放的是HashMapEntry 对象

看下LinkedHashMap 的 createEntry方法

void createEntry(int hash, K key, V value, int bucketIndex) {

HashMapEntry<K,V> old = table[bucketIndex];

LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);

table[bucketIndex] = e; //数组的添加

e.addBefore(header); //处理链表

size++;

}

LinkedHashMap的数组里面放的是LinkedHashMapEntry对象

LinkedHashMapEntry

private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {

// These fields comprise the doubly linked list used for iteration.

LinkedHashMapEntry<K,V> before, after; //双向链表

private void remove() {

before.after = after;

after.before = before;

}

private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {

after = existingEntry;

before = existingEntry.before;

before.after = this;

after.before = this;

}

LinkedHashMapEntry继承 HashMapEntry,添加before和after变量,所以是一个双向链表结构,还添加了addBeforeremove 方法,用于新增和删除链表节点。

LinkedHashMapEntry#addBefore

将一个数据添加到Header的前面

private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {

after = existingEntry;

before = existingEntry.before;

before.after = this;

after.before = this;

}

existingEntry 传的都是链表头header,将一个节点添加到header节点前面,只需要移动链表指针即可,添加新数据都是放在链表头header 的before位置,链表头节点header的before是最新访问的数据,header的after则是最旧的数据。

再看下LinkedHashMapEntry#remove

private void remove() {

before.after = after;

after.before = before;

}

链表节点的移除比较简单,改变指针指向即可。

再看下LinkHashMap的put 方法

public final V put(K key, V value) {

V previous;

synchronized (this) {

putCount++;

//size增加

size += safeSizeOf(key, value);

// 1、linkHashMap的put方法

previous = map.put(key, value);

if (previous != null) {

//如果有旧的值,会覆盖,所以大小要减掉

size -= safeSizeOf(key, previous);

}

}

trimToSize(maxSize);

return previous;

}

LinkedHashMap 结构可以用这种图表示

LinkHashMap 的 put方法和get方法最后会调用trimToSize方法,LruCache 重写trimToSize方法,判断内存如果超过一定大小,则移除最老的数据

LruCache#trimToSize,移除最老的数据

public void trimToSize(int maxSize) {

while (true) {

K key;

V value;

synchronized (this) {

//大小没有超出,不处理

if (size <= maxSize) {

break;

}

//超出大小,移除最老的数据

Map.Entry<K, V> toEvict = map.eldest();

if (toEvict == null) {

break;

}

key = toEvict.getKey();

value = toEvict.getValue();

map.remove(key);

//这个大小的计算,safeSizeOf 默认返回1;

size -= safeSizeOf(key, value);

evictionCount++;

}

entryRemoved(true, key, value, null);

}

}

对LinkHashMap 还不是很理解的话可以参考:

图解LinkedHashMap原理

LruCache小结:

  • LinkHashMap 继承HashMap,在 HashMap的基础上,新增了双向链表结构,每次访问数据的时候,会更新被访问的数据的链表指针,具体就是先在链表中删除该节点,然后添加到链表头header之前,这样就保证了链表头header节点之前的数据都是最近访问的(从链表中删除并不是真的删除数据,只是移动链表指针,数据本身在map中的位置是不变的)。

  • LruCache 内部用LinkHashMap存取数据,在双向链表保证数据新旧顺序的前提下,设置一个最大内存,往里面put数据的时候,当数据达到最大内存的时候,将最老的数据移除掉,保证内存不超过设定的最大值。

2.3.2 磁盘缓存 DiskLruCache

依赖:

implementation ‘com.jakewharton:disklrucache:2.0.2’

DiskLruCache 跟 LruCache 实现思路是差不多的,一样是设置一个总大小,每次往硬盘写文件,总大小超过阈值,就会将旧的文件删除。简单看下remove操作:

// DiskLruCache 内部也是用LinkedHashMap

private final LinkedHashMap<String, Entry> lruEntries =

new LinkedHashMap<String, Entry>(0, 0.75f, true);

public synchronized boolean remove(String key) throws IOException {

checkNotClosed();

validateKey(key);

Entry entry = lruEntries.get(key);

if (entry == null || entry.currentEditor != null) {

return false;

}

//一个key可能对应多个value,hash冲突的情况

for (int i = 0; i < valueCount; i++) {

File file = entry.getCleanFile(i);

//通过 file.delete() 删除缓存文件,删除失败则抛异常

if (file.exists() && !file.delete()) {

throw new IOException("failed to delete " + file);

}

size -= entry.lengths[i];

entry.lengths[i] = 0;

}

return true;

}

可以看到 DiskLruCache 同样是利用LinkHashMap的特点,只不过数组里面存的 Entry 有点变化,Editor 用于操作文件。

private final class Entry {

private final String key;

private final long[] lengths;

private boolean readable;

private Editor currentEditor;

private long sequenceNumber;

}

2.4 防止OOM

加载图片非常重要的一点是需要防止OOM,上面的LruCache缓存大小设置,可以有效防止OOM,但是当图片需求比较大,可能需要设置一个比较大的缓存,这样的话发生OOM的概率就提高了,那应该探索其它防止OOM的方法。

方法1:软引用

回顾一下Java的四大引用:

  • 强引用: 普通变量都属于强引用,比如 private Context context;
  • 软应用: SoftReference,在发生OOM之前,垃圾回收器会回收SoftReference引用的对象。
  • 弱引用: WeakReference,发生GC的时候,垃圾回收器会回收WeakReference中的对象。
  • 虚引用: 随时会被回收,没有使用场景。

怎么理解强引用:

强引用对象的回收时机依赖垃圾回收算法,我们常说的可达性分析算法,当Activity销毁的时候,Activity会跟GCRoot断开,至于GCRoot是谁?这里可以大胆猜想,Activity对象的创建是在ActivityThread中,ActivityThread要回调Activity的各个生命周期,肯定是持有Activity引用的,那么这个GCRoot可以认为就是ActivityThread,当Activity 执行onDestroy的时候,ActivityThread 就会断开跟这个Activity的联系,Activity到GCRoot不可达,所以会被垃圾回收器标记为可回收对象。

软引用的设计就是应用于会发生OOM的场景,大内存对象如Bitmap,可以通过 SoftReference 修饰,防止大对象造成OOM,看下这段代码

private static LruCache<String, SoftReference> mLruCache = new LruCache<String, SoftReference>(10 * 1024){

@Override

protected int sizeOf(String key, SoftReference value) {

//默认返回1,这里应该返回Bitmap占用的内存大小,单位:K

//Bitmap被回收了,大小是0

if (value.get() == null){

return 0;

}

return value.get().getByteCount() /1024;

}

};

LruCache里存的是软引用对象,那么当内存不足的时候,Bitmap会被回收,也就是说通过SoftReference修饰的Bitmap就不会导致OOM。

当然,这段代码存在一些问题,Bitmap被回收的时候,LruCache剩余的大小应该重新计算,可以写个方法,当Bitmap取出来是空的时候,LruCache清理一下,重新计算剩余内存;

还有另一个问题,就是内存不足时软引用中的Bitmap被回收的时候,这个LruCache就形同虚设,相当于内存缓存失效了,必然出现效率问题。

方法2:onLowMemory

当内存不足的时候,Activity、Fragment会调用onLowMemory方法,可以在这个方法里去清除缓存,Glide使用的就是这一种方式来防止OOM。

//Glide

public void onLowMemory() {

clearMemory();

}

public void clearMemory() {

// Engine asserts this anyway when removing resources, fail faster and consistently

Util.assertMainThread();

// memory cache needs to be cleared before bitmap pool to clear re-pooled Bitmaps too. See #687.

memoryCache.clearMemory();

bitmapPool.clearMemory();

arrayPool.clearMemory();

}

方法3:从Bitmap 像素存储位置考虑

我们知道,系统为每个进程,也就是每个虚拟机分配的内存是有限的,早期的16M、32M,现在100+M,

虚拟机的内存划分主要有5部分:

  • 虚拟机栈
  • 本地方法栈
  • 程序计数器
  • 方法区

而对象的分配一般都是在堆中,堆是JVM中最大的一块内存,OOM一般都是发生在堆中。

Bitmap 之所以占内存大不是因为对象本身大,而是因为Bitmap的像素数据, Bitmap的像素数据大小 = 宽 * 高 * 1像素占用的内存。

1像素占用的内存是多少?不同格式的Bitmap对应的像素占用内存是不同的,具体是多少呢?

在Fresco中看到如下定义代码

/**

  • Bytes per pixel definitions

*/

public static final int ALPHA_8_BYTES_PER_PIXEL = 1;

public static final int ARGB_4444_BYTES_PER_PIXEL = 2;

public static final int ARGB_8888_BYTES_PER_PIXEL = 4;

public static final int RGB_565_BYTES_PER_PIXEL = 2;

public static final int RGBA_F16_BYTES_PER_PIXEL = 8;

如果Bitmap使用 RGB_565 格式,则1像素占用 2 byte,ARGB_8888 格式则占4 byte。

在选择图片加载框架的时候,可以将内存占用这一方面考虑进去,更少的内存占用意味着发生OOM的概率越低。 Glide内存开销是Picasso的一半,就是因为默认Bitmap格式不同。

至于宽高,是指Bitmap的宽高,怎么计算的呢?看BitmapFactory.Options 的 outWidth

/**

  • The resulting width of the bitmap. If {@link #inJustDecodeBounds} is

  • set to false, this will be width of the output bitmap after any

  • scaling is applied. If true, it will be the width of the input image

  • without any accounting for scaling.

  • outWidth will be set to -1 if there is an error trying to decode.

*/

public int outWidth;

看注释的意思,如果 BitmapFactory.Options 中指定 inJustDecodeBounds 为true,则为原图宽高,如果是false,则是缩放后的宽高。所以我们一般可以通过压缩来减小Bitmap像素占用内存

扯远了,上面分析了Bitmap像素数据大小的计算,只是说明Bitmap像素数据为什么那么大。那是否可以让像素数据不放在java堆中,而是放在native堆中呢?据说Android 3.0到8.0 之间Bitmap像素数据存在Java堆,而8.0之后像素数据存到native堆中,是不是真的?看下源码就知道了~

8.0 Bitmap

java层创建Bitmap方法

public static Bitmap createBitmap(@Nullable DisplayMetrics display, int width, int height,

@NonNull Config config, boolean hasAlpha, @NonNull ColorSpace colorSpace) {

Bitmap bm;

if (config != Config.ARGB_8888 || colorSpace == ColorSpace.get(ColorSpace.Named.SRGB)) {

//最终都是通过native方法创建

bm = nativeCreate(null, 0, width, width, height, config.nativeInt, true, null, null);

} else {

bm = nativeCreate(null, 0, width, width, height, config.nativeInt, true,

d50.getTransform(), parameters);

}

return bm;

}

Bitmap 的创建是通过native方法 nativeCreate

对应源码 8.0.0_r4/xref/frameworks/base/core/jni/android/graphics/Bitmap.cpp

//Bitmap.cpp

static const JNINativeMethod gBitmapMethods[] = {

{ “nativeCreate”, “([IIIIIIZ[FLandroid/graphics/ColorSpace R g b Rgb RgbTransferParameters;)Landroid/graphics/Bitmap;”,

(void*)Bitmap_creator },

JNI动态注册,nativeCreate 方法 对应 Bitmap_creator

//Bitmap.cpp

static jobject Bitmap_creator(JNIEnv* env, jobject, jintArray jColors,

jint offset, jint stride, jint width, jint height,

jint configHandle, jboolean isMutable,

jfloatArray xyzD50, jobject transferParameters) {

//1. 申请堆内存,创建native层Bitmap

sk_sp nativeBitmap = Bitmap::allocateHeapBitmap(&bitmap, NULL);

if (!nativeBitmap) {

return NULL;

}

//2.创建java层Bitmap

return createBitmap(env, nativeBitmap.release(), getPremulBitmapCreateFlags(isMutable));

}

主要两个步骤:

  1. 申请内存,创建native层Bitmap,看下allocateHeapBitmap方法

8.0.0_r4/xref/frameworks/base/libs/hwui/hwui/Bitmap.cpp

//

static sk_sp allocateHeapBitmap(size_t size, const SkImageInfo& info, size_t rowBytes,

SkColorTable* ctable) {

// calloc 是c++ 的申请内存函数

void* addr = calloc(size, 1);

if (!addr) {

return nullptr;

}

return sk_sp(new Bitmap(addr, size, info, rowBytes, ctable));

}

可以看到通过c++的 calloc 函数申请了一块内存空间,然后创建native层Bitmap对象,把内存地址传过去,也就是native层的Bitmap数据(像素数据)是存在native堆中。

  1. 创建java 层Bitmap

//Bitmap.cpp

jobject createBitmap(JNIEnv* env, Bitmap* bitmap,

int bitmapCreateFlags, jbyteArray ninePatchChunk, jobject ninePatchInsets,

int density) {

BitmapWrapper* bitmapWrapper = new BitmapWrapper(bitmap);

//通过JNI回调Java层,调用java层的Bitmap构造方法

jobject obj = env->NewObject(gBitmap_class, gBitmap_constructorMethodID,

reinterpret_cast(bitmapWrapper), bitmap->width(), bitmap->height(), density,

isMutable, isPremultiplied, ninePatchChunk, ninePatchInsets);

return obj;

}

env->NewObject,通过JNI创建Java层Bitmap对象,gBitmap_class,gBitmap_constructorMethodID这些变量是什么意思,看下面这个方法,对应java层的Bitmap的类名和构造方法。

//Bitmap.cpp

int register_android_graphics_Bitmap(JNIEnv* env)

{

gBitmap_class = MakeGlobalRefOrDie(env, FindClassOrDie(env, “android/graphics/Bitmap”));

gBitmap_nativePtr = GetFieldIDOrDie(env, gBitmap_class, “mNativePtr”, “J”);

gBitmap_constructorMethodID = GetMethodIDOrDie(env, gBitmap_class, “”, “(JIIIZZ[BLandroid/graphics/NinePatch$InsetStruct;)V”);

gBitmap_reinitMethodID = GetMethodIDOrDie(env, gBitmap_class, “reinit”, “(IIZ)V”);

gBitmap_getAllocationByteCountMethodID = GetMethodIDOrDie(env, gBitmap_class, “getAllocationByteCount”, “()I”);

return android::RegisterMethodsOrDie(env, “android/graphics/Bitmap”, gBitmapMethods,

NELEM(gBitmapMethods));

}

8.0 的Bitmap创建就两个点:

  1. 创建native层Bitmap,在native堆申请内存。

  2. 通过JNI创建java层Bitmap对象,这个对象在java堆中分配内存。

像素数据是存在native层Bitmap,也就是证明8.0的Bitmap像素数据存在native堆中。

7.0 Bitmap

直接看native层的方法,

/7.0.0_r31/xref/frameworks/base/core/jni/android/graphics/Bitmap.cpp

//JNI动态注册

static const JNINativeMethod gBitmapMethods[] = {

{ “nativeCreate”, “([IIIIIIZ)Landroid/graphics/Bitmap;”,

(void*)Bitmap_creator },

static jobject Bitmap_creator(JNIEnv* env, jobject, jintArray jColors,

jint offset, jint stride, jint width, jint height,

jint configHandle, jboolean isMutable) {

//1.通过这个方法来创建native层Bitmap

Bitmap* nativeBitmap = GraphicsJNI::allocateJavaPixelRef(env, &bitmap, NULL);

return GraphicsJNI::createBitmap(env, nativeBitmap,

getPremulBitmapCreateFlags(isMutable));

}

native层Bitmap 创建是通过GraphicsJNI::allocateJavaPixelRef,看看里面是怎么分配的, GraphicsJNI 的实现类是Graphics.cpp

android::Bitmap* GraphicsJNI::allocateJavaPixelRef(JNIEnv* env, SkBitmap* bitmap,

SkColorTable* ctable) {

const SkImageInfo& info = bitmap->info();

size_t size;

//计算需要的空间大小

if (!computeAllocationSize(*bitmap, &size)) {

return NULL;

}

// we must respect the rowBytes value already set on the bitmap instead of

// attempting to compute our own.

const size_t rowBytes = bitmap->rowBytes();

// 1. 创建一个数组,通过JNI在java层创建的

jbyteArray arrayObj = (jbyteArray) env->CallObjectMethod(gVMRuntime,

gVMRuntime_newNonMovableArray,

gByte_class, size);

// 2. 获取创建的数组的地址

jbyte* addr = (jbyte*) env->CallLongMethod(gVMRuntime, gVMRuntime_addressOf, arrayObj);

//3. 创建Bitmap,传这个地址

android::Bitmap* wrapper = new android::Bitmap(env, arrayObj, (void*) addr,

info, rowBytes, ctable);

wrapper->getSkBitmap(bitmap);

// since we’re already allocated, we lockPixels right away

// HeapAllocator behaves this way too

bitmap->lockPixels();

return wrapper;

}

可以看到,7.0 像素内存的分配是这样的:

  1. 通过JNI调用java层创建一个数组
  1. 然后创建native层Bitmap,把数组的地址传进去。

由此说明,7.0 的Bitmap像素数据是放在java堆的。

当然,3.0 以下Bitmap像素内存据说也是放在native堆的,但是需要手动释放native层的Bitmap,也就是需要手动调用recycle方法,native层内存才会被回收。这个大家可以自己去看源码验证。

native层Bitmap 回收问题

Java层的Bitmap对象由垃圾回收器自动回收,而native层Bitmap印象中我们是不需要手动回收的,源码中如何处理的呢?

记得有个面试题是这样的:

说说final、finally、finalize 的关系

三者除了长得像,其实没有半毛钱关系,final、finally大家都用的比较多,而 finalize 用的少,或者没用过,finalize 是 Object 类的一个方法,注释是这样的:

/**

  • Called by the garbage collector on an object when garbage collection

最后

其实Android开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!
map);

// since we’re already allocated, we lockPixels right away

// HeapAllocator behaves this way too

bitmap->lockPixels();

return wrapper;

}

可以看到,7.0 像素内存的分配是这样的:

  1. 通过JNI调用java层创建一个数组
  1. 然后创建native层Bitmap,把数组的地址传进去。

由此说明,7.0 的Bitmap像素数据是放在java堆的。

当然,3.0 以下Bitmap像素内存据说也是放在native堆的,但是需要手动释放native层的Bitmap,也就是需要手动调用recycle方法,native层内存才会被回收。这个大家可以自己去看源码验证。

native层Bitmap 回收问题

Java层的Bitmap对象由垃圾回收器自动回收,而native层Bitmap印象中我们是不需要手动回收的,源码中如何处理的呢?

记得有个面试题是这样的:

说说final、finally、finalize 的关系

三者除了长得像,其实没有半毛钱关系,final、finally大家都用的比较多,而 finalize 用的少,或者没用过,finalize 是 Object 类的一个方法,注释是这样的:

/**

  • Called by the garbage collector on an object when garbage collection

最后

其实Android开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。

[外链图片转存中…(img-PUHUBdr0-1715704174023)]

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值