总结:
-
函数式编程其实是一种编程思想,它追求更细的粒度,将应用拆分成一组组极小的单元函数,组合调用操作数据流;
-
它提倡着 纯函数 / 函数复合 / 数据不可变, 谨慎对待函数内的 状态共享 / 依赖外部 / 副作用;
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
Tips:
其实我们很难也不需要在面试过程中去完美地阐述出整套思想,这里也只是浅尝辄止,一些个人理解而已。博主也是初级小菜鸟,停留在表面而已,只求对大家能有所帮助,轻喷🤣;
我个人觉得: 这些编程范式之间,其实并不矛盾,各有各的 优劣势。
理解和学习它们的理念与优势,合理地 设计融合,将优秀的软件编程思想用于提升我们应用;
所有设计思想,最终的目标一定是使我们的应用更加 解耦颗粒化、易拓展、易测试、高复用,开发更为高效和安全;
算法讲解:
- 根结点值最大的叫大顶堆,根结点值最小的叫小顶堆,上图就是一个构造大顶堆的图
- 从最后一层开始,如果孩子结点的值比父亲结点大,那么就交换位置
- 一层层向上推,直到根结点值最大
建立初始堆:
void crt_heap(RecordType r[], int length )
/对记录数组r建堆,length为数组的长度/
{
int i,n;
n= length;
for ( i=n/2; i >= 1; --i) /* 自第[n/2]个记录开始进行筛选建堆 */
sift(r,i,n);
}
调整堆:
void sift(RecordType r[], int k, int m)
/* 假设r[k…m]是以r[k]为根的完全二叉树,且分别以r[2k]和r[2k+1]为根的左、右子树为大根堆,调整r[k],使整个序列r[k…m]满足堆的性质 */
{ RecordType t; int i,j; int x; int finished;
t= r[k]; /* 暂存"根"记录r[k] */
x=r[k].key; i=k; j=2*i;
finished=FALSE;
while( j<=m && !finished )
{
if (j<m && r[j].key< r[j+1].key ) j=j+1; /* 若存在右子树,
且右子树 根的关键字大,则沿右分支"筛选" */
if ( x>= r[j].key) finished=TRUE; /* 筛选完毕 */
else
{ r[i] = r[j]; i=j; j=2i; } / 继续筛选 */
}
r[i] =t; /* r[k]填入到恰当的位置 */
}
堆排序:
void HeapSort(RecordType r[],int length)
/* 对r[1…n]进行堆排序,执行本算法后,r中记录按关键字由大到小有序排列 */
{
int i,n; RecordType b;
crt_heap(r, length); n= length;
for ( i=n ; i>= 2; --i)
{
b=r[1]; /* 将堆顶记录和堆中的最后一个记录互换 */
r[1]= r[i];
r[i]=b;
sift(r,1,i-1); /* 进行调整,使r[1…i-1]变成堆 */
}
} /* HeapSort */
特点:
- 堆选择是树形的改进,空间占用较小
- 不稳定排序,适合n值较大的排序
- 时间复杂度O(n*logn),空间复杂度O(1)
三、归并排序
法一:
- 将整体数字一分为二,逐层细分
- 细分完成后,每一块进行排序,直到整体有序
法二:
- 将一串序列,相邻的两个归并到一起排序,再次把相邻两个有序的归并块再次排序,直到最后有序(优先推荐这种算法)
代码:
void MergeSort ( RecordType r[], int n) /* 对记录数组r[1…n]做归并排序 */
{
MSort ( r, 1, n, r);
}
void MSort(RecordType r1[], int low, int high, RecordType r3[])
/* r1[low…high]经过排序后放在r3[low…high]中,r2[low…high]为辅助空间 */
{
int mid; RecordType r2[20];
if (low==high) r3[low]=r1[low];
else
{
mid=(low+high)/2;
MSort(r1,low, mid, r2);
MSort(r1,mid+1,high, r2);
Merge (r2,low,mid,high, r3);
}
} /* MSort */
特点:
- 稳定排序
- 时间复杂度O(nlogn),空间复杂度O(n)
- 附加空间比较大,很少用于内部排序,主要是外部排序
四、分配类排序
1.多关键字排序
- 高位优先:按照花色大小分成四类,在每一类中按照面值进行排序
- **低位优先:**按照面值大小分成13类,将相同面值的不同花色进行排序
2.链式基数排序
算法讲解:
- 对于上面的9个三位数,第一步我们按照个位数从小到大排序
- 接着第一步的结果,按照十位数从小到达排序
- 最后借助第二步的结果,按照百位数从小到大排序
- 同样的,对于4位 5 位方法一样
特点:
- 时间复杂度O(d*n),d是关键字数,n是记录数
- 稳定的排序
- 空间复杂度=2个队列指针+n个指针域
五、总结归纳
排序算法 | 平均时间复杂度 | 空间复杂度 | 稳定性 | 特点 |
简单选择排序 | O(n*n) | O(1) | 不稳定 | 适合基本有序 |
树形选择排序 | O(n*logn) | O(n) | 稳定 | 占用空间过大 |
堆选择排序 | O(n*logn) | O(1) | 不稳定 | 适合n值较大的排序 |
归并排序 | O(n*logn) | O(n) | 稳定 | 子序列要求有序 |
基数排序 | O(d*n) | 2个队列指针+n个指针域 | 稳定 | 适合关键字位数较小 |
附录:
JavaScript
-
js的基本类型有哪些?引用类型有哪些?null和undefined的区别。
-
如何判断一个变量是Array类型?如何判断一个变量是Number类型?(都不止一种)
-
Object是引用类型嘛?引用类型和基本类型有什么区别?哪个是存在堆哪一个是存在栈上面的?
-
JS常见的dom操作api
-
解释一下事件冒泡和事件捕获
-
事件委托(手写例子),事件冒泡和捕获,如何阻止冒泡?如何组织默认事件?
-
对闭包的理解?什么时候构成闭包?闭包的实现方法?闭包的优缺点?
-
this有哪些使用场景?跟C,Java中的this有什么区别?如何改变this的值?
-
call,apply,bind
-
显示原型和隐式原型,手绘原型链,原型链是什么?为什么要有原型链
-
创建对象的多种方式
-
实现继承的多种方式和优缺点
-
new 一个对象具体做了什么
-
手写Ajax,XMLHttpRequest
-
变量提升
-
举例说明一个匿名函数的典型用例
-
指出JS的宿主对象和原生对象的区别,为什么扩展JS内置对象不是好的做法?有哪些内置对象和内置函数?
-
attribute和property的区别
-
document load和document DOMContentLoaded两个事件的区别
-
JS代码调试