class Solution:
def maxSubArray(self, nums: List[int]) -> int:
# 动态规划
res = cur = nums[0]
for i in range(1, len(nums)):
cur = max(nums[i], cur + nums[i])
res = max(res, cur)
return res
动态规划。时间复杂度O(n), 空间复杂度 O(1)。
7.链表
面试题:反转单向链表
题目需要将一个单向链表反转。思路很简单,使用三个变量分别表示当前节点和当前节点的前后节点,虽然这题很简单,但是却是一道面试常考题
以下是实现该算法的代码
var reverseList = function(head)
{
// 判断下变量边界问题
if (!head || !head.next) return head
// 初始设置为空,因为第一个节点反转后就是尾部,尾部节点指向 null
let pre = null
let current = head
let next
// 判断当前节点是否为空
// 不为空就先获取当前节点的下一节点
// 然后把当前节点的 next 设为上一个节点
// 然后把 current 设为下一个节点,pre 设为当前节点
while(current) {
next = current.next
current.next = pre
pre = current
current = next
}
return pre
};
8.二叉树的先序,中序,后序遍历
先序遍历表示先访问根节点,然后访问左节点,最后访问右节点。
中序遍历表示先访问左节点,然后访问根节点,最后访问右节点。
后序遍历表示先访问左节点,然后访问右节点,最后访问根节点。
9.递归实现
递归实现相当简单,代码如下
function TreeNode(val)
{
this.val = val;
this.left = this.right = null;
}
var traversal = function(root) {
if (root)
{
// 先序
console.log(root);
traversal(root.left);
// 中序
// console.log(root);
traversal(root.right);
// 后序
// console.log(root);
}
};
10.树的深度
面试题:树的最大深度(题目需要求出一颗二叉树的最大深度)
以下是算法实现
var maxDepth = function(root)
{
if (!root) return 0
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1
};
11.动态规划
动态规划背后的基本思想非常简单。就是将一个问题拆分为子问题,一般来说这些子问题都是非常相似的,那么我们可以通过只解决一次每个子问题来达到减少计算量的目的。
一旦得出每个子问题的解,就存储该结果以便下次使用。
12.合并两个有序链表
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]
以下是实现该算法的代码
function mergeTwoLists(l1, l2) {
if (l1 = null && l2 == null) {
return null;
}
if (l1 == null) {
return l2;
}
if (l2 == null) {
return l1;
}
if (l1.val < l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
总结
前端资料汇总
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
-
框架原理真的深入某一部分具体的代码和实现方式时,要多注意到细节,不要只能写出一个框架。
-
算法方面很薄弱的,最好多刷一刷,不然影响你的工资和成功率😯
-
在投递简历之前,最好通过各种渠道找到公司内部的人,先提前了解业务,也可以帮助后期优秀 offer 的决策。
-
要勇于说不,对于某些 offer 待遇不满意、业务不喜欢,应该相信自己,不要因为当下没有更好的 offer 而投降,一份工作短则一年长则 N 年,为了幸福生活要慎重选择!!!
喜欢这篇文章文章的小伙伴们点赞+转发支持,你们的支持是我最大的动力!