前言
什么是ChatGPT?什么是GPT-4?Bard和PaLM又是什么?它们有什么关系?它们对我们有什么影响?
AI技术第一次这么密集地冲击着非从业者们,身处变革之中的我们或许会迷茫,但这本来就是工业革命之后的常态,我们要做的就是像九十年代学习计算机一样拥抱未来。
在ChatGPT刚出的时候,我对未来的知识创作是抱着悲观态度的。我认为个人创作者会被ChatGPT挤兑,或者直接投降借助ChatGPT来创作。久而久之,知识会陷入到封闭的循环当中,知乎也会沦为一个ChatGPT版公众号的聚集地,所以有一段时间我卸载了知乎。但是不久之后,我就发现自己这样的想法就和1900年的保皇派一样,看似是看清了变革的方向,实际却是裹足不前。
对于一个新事物,体系性的学习是理解和掌握它的必要途径,也是最便捷的方式。如果只是试图从公众号庞杂的文章中了解,无异于管中窥豹。
在信息爆炸的时代,数据如同海洋般浩渺无垠。如何在这片数据的海洋中快速找到有价值的信息,成为了每一个企业、每一个个体都面临的重要挑战。
而在这个背景下,大模型应运而生,成为了我们处理、分析和利用数据的强大工具。今天,就让我们一起从零开始,认识大模型的魅力与未来。
一、什么是大模型?
大模型,顾名思义,就是具有庞大参数和复杂结构的机器学习模型。它能够处理海量的数据,从中提取出有价值的信息,为我们提供决策支持。与传统的机器学习模型相比,大模型具有更高的准确性、更强的泛化能力和更广泛的应用场景。
二、大模型的魅力何在?
海量数据处理能力:大模型能够轻松应对TB级甚至PB级的数据,从中提取出有价值的信息。这使得我们在处理大规模数据时,不再需要担心计算资源的限制。
高度准确性:通过深度学习等先进算法,大模型能够自动学习数据的内在规律,从而实现对数据的精准预测和分析。这为我们提供了更加可靠的决策支持。
广泛应用场景:大模型的应用场景非常广泛,包括但不限于自然语言处理、图像识别、语音识别、推荐系统等。它已经成为我们生活中不可或缺的一部分。
三、大模型的未来展望
- 模型规模继续扩大:随着计算资源的不断提升和算法的优化,大模型的规模将会继续扩大。这将使得大模型在处理更加复杂的数据和任务时,具有更强的能力。
- 多模态融合:未来的大模型将会更加注重多模态信息的融合,如文本、图像、音频等。这将使得大模型在处理多模态数据时,具有更高的准确性和效率。
- 可解释性提升:目前的大模型在一定程度上存在“黑箱”问题,即我们无法完全理解其内部的工作机制。未来的大模型将会更加注重可解释性的提升,使得我们能够更好地理解其内部的工作机制,从而更好地应用它。
- 个性化与定制化:随着大数据和人工智能技术的不断发展,未来的大模型将会更加注重个性化和定制化的需求。这将使得大模型能够更好地满足不同用户、不同场景的需求,提供更加精准的服务。
四、如何开始接触大模型?
- 学习相关知识:了解大模型的基本原理、算法和应用场景等方面的知识,是开始接触大模型的第一步。可以通过阅读相关书籍、参加在线课程等方式进行学习。
- 实践项目:通过实践项目来加深对大模型的理解和掌握。可以选择一些开源的大模型项目进行实践,如Transformer、BERT等。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓