最近在静态、预先收集的通用数据集上训练的大型语言模型 (LLM) 的成功引发了许多研究方向和应用。其中一个方向解决了将预训练的 LLM 集成到动态数据分布、任务结构和用户偏好中的重要挑战。预先训练的 LLM 在针对特定需求量身定制时,通常会在以前的知识领域中经历显着的性能下降——这种现象被称为“灾难性遗忘”。虽然在持续学习 (CL) 社区中进行了广泛的研究,但它在 LLM 领域提出了新的表现形式。在本次调查中,我们全面概述了CL背景下LLMs的当前研究进展。本调查分为四个主要部分:我们首先描述了持续学习 LLM 的概述,包括两个连续性方向:垂直连续性(或垂直持续学习),即从一般能力到特定能力的持续适应,以及水平连续性(或水平持续学习),即跨时间和领域的持续适应(第 3 节)。然后,我们总结了在现代 CL 背景下学习 LLM 的三个阶段:持续预训练 (CPT)、领域自适应预训练 (DAP) 和持续微调 (CFT)(第 4 节)。然后,我们概述了使用 LLM 进行持续学习的评估协议,以及当前可用的数据源(第 5 节)。最后,我们讨论了与LLM持续学习有关的有趣问题(第6节)。
想要论文资源的可以找我拿