在数字化浪潮汹涌澎湃的当下,大模型如同一颗璀璨新星,强势崛起并迅速成为科技领域的焦点。从最初的理论探索到如今在各个行业的广泛应用,大模型正以惊人的速度重塑着我们的生活与工作模式。它不仅是人工智能技术发展的重大突破,更是推动经济增长、提升社会治理效能、促进科技创新的关键力量。
中国AI公司深度求索(DeepSeek)通过以显著降低成本提供高性能AI模型,开创了行业构建数字化业务的新范式。深度求索创新要点包括:①成本效益:通过创新工程而非堆砌算力实现高性能(Metz & Tobin, 2025)。②开源协作:开放模型与训练方法,推动全球AI社区创新(Guo等, 2024)。③高效架构:采用多头潜在注意力(MLA)与专家混合架构(MoE),V3模型性能超越Llama 3.1,比肩GPT-4(Shao等, 2024)。④战略定位:专注研究突破,开发具备“自我对话”能力的推理模型(The Economist, 2025)。⑤挑战硅谷:被喻为美国AI的“斯普特尼克时刻”,迫使科技巨头重新评估战略(Wade, 2024)。
低成本AI模型,尤其是深度求索的技术突破,为各行各业带来了显著的变革潜力,其中最直接的影响是大幅降低了AI应用的门槛。传统AI开发需要巨额资金投入与强大的计算资源,这使得中小型机构难以参与竞争。低成本AI的普及推动了创新的民主化。开源模式不仅降低了技术门槛,还促进了全球开发者社区的协作,使得更多创新想法得以快速实现。这种开放的环境特别有利于新兴市场的发展。
所以,我们认为,未来所有行业、所有应用、所有软件、所有服务都值得基于AIGC各方面技术、大模型技术重做一遍。
行业层面
提高生产效率:在制造业中,可利用 AIGC 和大模型优化生产流程、进行质量检测和设备故障预测等。如特斯拉工厂的人形机器人搭载多模态大模型,能执行复杂任务并实现群体智能,缩短产线切换车型的时间。在农业领域,通过传感器与气候大模型结合,能精准调节作物生长环境,还可跨产业利用数据,如草莓农场数据优化海水淡化厂膜分离效率。
创新商业模式:零售行业借助 AIGC 技术可以根据消费者行为数据提前预测流行趋势,实现 “需求预创造”,缩短爆款打造周期。金融行业能利用 AI 分析各类复杂数据创造新型金融工具,如基于气候大模型开发出 “厄尔尼诺指数互换合约”。
提升服务质量:医疗行业基于 AIGC 和大模型可建立 “数字孪生人” 项目,实现 “预测性医疗”,提前发现疾病前兆并干预。教育行业通过 AIGC 监测学习者状态,实现个性化教学,提高知识吸收效率。
应用层面
内容创作领域:AIGC 可以快速生成文本、图像、音频、视频等多种形式的内容。例如在新闻写作中,能快速生成简单的新闻报道;在广告创意方面,可根据产品特点和目标受众迅速生成创意文案和设计草图;在影视制作中,能辅助生成剧本、分镜头脚本,甚至制作一些特效场景。
智能客服领域:基于大模型的智能客服能够理解更复杂的用户问题,提供更准确、更个性化的回答,还可以实现多语言服务,实时翻译用户的问题和回复,提高跨国服务的效率和质量。
智能推荐领域:利用 AIGC 技术可以对用户的兴趣、行为进行更深入的分析,提供更加精准的商品推荐、内容推荐等。比如电商平台可以根据用户的浏览历史和购买记录,通过大模型分析生成更符合用户个性化需求的商品推荐列表;视频平台能推荐用户可能感兴趣的视频内容。
软件层面
开发效率提升:AIGC 可以辅助开发人员进行代码编写、测试和调试等工作。能够根据需求描述自动生成部分代码框架,还能对代码进行智能分析,发现潜在的漏洞和错误,提高软件的质量和稳定性,缩短开发周期,降低开发成本。
功能创新增强:软件可以集成 大模型的能力,实现新的功能。如办公软件可以具备智能文档处理功能,自动对文档内容进行总结、分析和优化;绘图软件能根据用户的简单描述生成复杂的图形和设计。
用户体验优化:通过大模型技术,软件可以实现更智能的交互方式,如自然语言交互、语音控制等。用户可以通过说话或简单的文字输入来操作软件,无需繁琐的菜单操作,提高使用的便捷性和效率。
服务层面
个性化服务升级:服务行业可以利用 AIGC 和大模型对客户数据进行深入分析,了解客户的需求、偏好和行为模式,提供更加个性化的服务。如旅游服务可以根据客户的兴趣爱好和预算,定制独特的旅行方案;金融服务能为客户提供个性化的投资建议。
服务流程优化:在服务流程中,AIGC 可以实现自动化和智能化。例如在物流服务中,通过大模型优化运输路线、调度车辆和预测配送时间;在政务服务中,利用 AIGC 自动处理一些常规的审批流程,提高服务效率。
服务范围拓展:基于 AIGC 的技术,服务的范围和边界可以得到拓展。如在线教育服务可以通过虚拟实验室、虚拟导师等形式,为学生提供更丰富的学习资源和体验;远程医疗服务借助 AIGC 技术可以实现更精准的诊断和治疗方案制定,扩大医疗服务的覆盖范围。
企业落地大模型的“五步法”
大模型已经从概念普及阶段迅速过渡到落地应用阶段,鉴于大模型的复杂性,企业需要一个系统性的框架来开展大模型试点工作。沙丘智库提供了一个大模型的试点工作路线,为企业探索大模型应用提供参考。
第一步,与业务部门一起挖掘可能的大模型应用场景,充分关注大模型的颠覆性创新能力。
企业试点大模型一定要以业务为导向,让业务部门参与到大模型的试点项目中,得到至少一名企业高管的支持,这位高管不仅要对大模型感兴趣,也要在组织内部有足够的影响力,推动试点项目的开展并清除可能出现的障碍。
第二步,通过对用例的业务价值和可行性进行评分,对用例的优先级进行排序,选择其中最可行、具价值的几个用例开启试点工作。
场景的优先级排序是大模型试点成功的关键,因此在短暂的试点期间,企业应该从众多用例中选择几个开展试点。企业可以通过对用例的业务价值和可行性进行评分,对用例的优先级进行排序。
以平安银行为例,平安银行通过价值评估体系和大模型应用成熟度评估体系判断应用场景的优先级。同时,对于任何场景的落地,必须通过业务指标衡量对业务的价值,判断应用深度和技术深度是否需要继续提升。从实际投产的场景来看,平安银行将值得重点探索的方向总结为:信息抽取、个性化文案、辅助编程、文生图、报告生成和阅读理解问答。
第三步,为试点工作组建一个跨IT和业务部门的融合团队,包括业务专家、IT专家以及人工智能专家。
以中国一汽为例,大模型项目由业务(包括高级经理、AI专员)、战队(包括AI产品经理、IT开发人员、初级算法工程师)和AI能力中心(包括算法工程师、AI架构师、prompt工程师、数据工程师)共同参与,在不同阶段发挥各自的职责。
第四步,确定试点目标和关键考核指标,为每个用例设计一个MVP验证版本,选择建设路径和风险应对措施。
第五步,在规定时间内交付测试用例的MVP版本,然后决定是终止还是进一步拓展。在初步成功的基础上继续投入和建设,总结在试点中获得的价值和经验教训,并扩展更多的大模型应用。
大模型落地需要哪些工程化服务
当前大模型无疑已经成为每个企业降本增效必须使用的工具了,但是我们该如何接入DeepSeek 等大模型么?以金融行业为例,我们认为大模型的落地需要以下 AI 工程化服务能力:
第一,数据处理能力,要从金融业务系统、市场数据平台、新闻资讯源等多渠道收集海量数据,并对收集到的数据进行清洗和分类,如将金融产品分为股票、债券、基金等类别,便于模型学习和理解。此外,采用加密技术对数据进行加密存储和传输,防止数据泄露,并在不影响数据可用性的前提下,保护客户隐私。
第二,模型训练与优化能力,依据金融业务场景和需求,选择合适的 DeepSeek 模型版本,如在风险评估场景可选择擅长逻辑推理和数据分析的版本。并根据具体业务特点对模型进行定制化开发,如融入特定的金融知识图谱或业务规则。同时,使用大规模的金融数据对模型进行训练,调整学习率、层数、神经元数量等超参数,以提升模型的准确性和泛化能力。
第三,算力与基础设施支持能力,金融机构需要配备强大的计算资源,如 GPU 集群、云计算平台等,以满足 DeepSeek 模型训练和推理的需求。同时,利用资源管理工具,实现计算资源的合理分配和调度,提高资源利用率。
第四,应用开发与集成能力,金融机构需要开发与金融业务系统相兼容的接口,确保 DeepSeek 模型能与金融机构现有的核心系统、业务平台等进行无缝对接。如在贷款审批流程中,利用模型进行风险评估和决策支持。对业务流程进行优化和调整,以适应模型的应用,提高业务效率和质量。
第五,运维与监控能力,金融机构需要将训练好的 DeepSeek 模型部署到生产环境中,确保模型的稳定性和可靠性。根据业务需求和模型性能变化,及时对模型进行更新和升级,保持模型的准确性和时效性。
同时,建立完善的监控体系,对模型的运行状态、性能指标、数据流量等进行实时监控。当系统出现故障或异常时,能够快速定位问题并进行排除,保障系统的正常运行。
第六,安全与合规管理能力,为了防止模型被恶意攻击和窃取,金融机构需要采用模型加密、数字水印等技术,保护模型的知识产权和安全性。对模型进行安全评估和漏洞扫描,及时发现和修复潜在的安全隐患。同时,确保 DeepSeek 模型的应用符合金融行业的法律法规和监管要求,如数据保护法规、反洗钱法规等,制定相应的风险防控措施,建立风险预警机制,及时发现和处理风险事件,降低风险损失。
总结与讨论
过去几年,国内外的 AI 厂商均在大模型领域有所布局。OpenAI 在 2019 年发布了GPT-2 大模型,国内互联网科技厂商也集中在 2020-2022 三年期间相继发布了自己的大模型。ChatGPT 的发布,掀起一波发展热潮,原有厂商基于自身大模型开始推出一系列生成式 AI 应用,并对外提供 API 接口。更多的创业公司、科研机构和新的科技厂商涌入该市场,发布相关的产品服务。
大模型人气高涨,吸引了用户的关注,不仅是 CIO、CTO 等技术决策人员,CEO、CFO 等业务决策人员也同样希望发挥此类模型在业务用例中的潜力。用户关注度的跃升成为对厂商自身能力的考验,前期已具备全栈大模型构建能力的厂商开始显现积累优势。为帮助用户了解国内大模型市场的发展情况、厂商格局和竞争地位,我们研究团队通过详实的访谈调研,对中国市场提供大模型产品服务的厂商进行了深入的分析和评估。
关键发现点
AI 大模型的高速发展离不开底层技术支持和应用场景迭代。大模型作为 AGI 时代的曙光,相关厂商也将迎来广阔的发展空间。本报告将呈现从发展现状、驱动因素洞察 AI 大模型厂商竞争与发展关键点,并推演竞争格局的逻辑分析过程:
**• 前瞻洞察:**通向 AGI 的技术路径具有多元性,目前大模型是最佳实现方式。大模型具有强大的泛化性、通用性和实用性,能够降低 AI 开发门槛、提高模型精度和泛化能力、提高内容生成质量和效率等多种价值,实现了对传统 AI 技术的突破,并成为 AGI的重要起点。进而将 AI 发展由数据飞轮升级到智慧飞轮,最终迈向人机共智。大模型和 人类反馈的强化学习( RLHF )的结合,进一步重构了AI 开发范式,进入大模型主导的软件 2.0 时代。另一方面,AI 开发则形成新的“二八定律”,开发者的生产力将得到极大释放。
**• 驱动因素:**大模型“基础设施 - 底层技术 - 基础通用 - 垂直应用”发展路线逐渐清晰,国内各厂商加速战略布局,加大资金和技术投入,迎头赶上全球大模型产业化浪潮,本土化大模型迎来发展新机遇。整体上,行业驱动因素主要包含三个层面:
(1)政策端:政策环境持续优化,赋能AI 大模型市场高速发展。
(2)供给端: 下一代 AI 基础设施等快速发展,助力大模型应用落地。
(3)需求端:AI 市场高景气,大模型下游行业需求旺盛。
**• 行业观点:**大模型未来发展将趋于通用化与专用化并行 、 平台化与简易化并进。同时,MaaS 模式将成为 AI 应用的全新形式且快速发展,重构 AI 产业的商业化结构生态,激发新的产业链分工和商业模式。未来,大模型将深入应用于用户生活和企业生产模式,释放创造力和生产力,活跃创造思维 、重塑工作模式,助力企业的组织变革和经营效率,赋能产业变革。
**• 关键成功因素:**大模型面临算力需求大、训练和推理成本高、数据质量不佳等挑战。一个可对外商业化输出的大模型的成功,要求其厂商拥有全栈大模型训练与研发能力、业务场景落地经验、AI 安全治理举措、以及生态开放性 4 大核心优势,才能保证其在竞争中突出重围。其中,全栈大模型训练与研发能力还包括数据管理经验,AI 基础设施建设与运营,以及大模型系统和算法设计 3 个关键要素。
_
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓