挖掘了170家公司,AI Agents市场全解析

AI agent市场图谱

在本文中我们通过挖掘CB Insights数据库,绘制了包含170多家AI agent初创公司的市场图谱,覆盖26个类别。本文还提供了关于AI agent的发展前景、局限性和未来方向的展望。

这些数据来源于哪里?

"数字协作者"正从概念走向现实。

虽然AI助手已经在各行业取得进展,但下一阶段的演变——具有更广泛决策范围的自主智能体正快速到来。AI agent初创公司在2024年融资达38亿美元(几乎是2023年的三倍),而且每个科技巨头都在开发AI agent或提供相关工具。

对企业的影响将是深远的,从改变劳动力结构(人类与AI agent的混合团队)到通过全面自动化常规任务来最大化运营效率。

以下我们列出了170多家有前景的开发AI agent基础设施和应用的初创公司。

我们根据Mosaic健康评分(500+)和/或近期融资情况(2022年以来)选择公司。我们仅包括私营公司,并根据其主要业务进行分类。此市场图谱并非此领域的详尽列表。

我们根据Mosaic健康评分(500+)和/或近期融资情况(2022年以来)选择公司。我们仅包括私营公司,并根据其主要业务进行分类。此市场图谱并非此领域的详尽列表。

AI agent展望

完全自主的智能体因可靠性、推理能力和访问权限等问题而受到限制。当今大多数agent应用都在"护栏"内运行——在受约束的架构中,例如,基于LLM的系统遵循决策树来完成任务。

本图谱中的智能体包含以下组件的某种组合:

  • 推理能力: 支持复杂推理、语言理解和决策的基础模型。这些模型评估信息并构成智能体的认知核心。

  • 记忆系统: 存储、组织和检索短期上下文信息和长期知识的系统。

  • 工具使用: 允许智能体与外部应用、API、数据库、互联网和其他软件交互的集成能力。

  • 规划能力: 智能体将复杂任务分解为更易管理的步骤、反思表现并适时调整的架构。

我们预计随着AI能力的提升,更多初创公司将提高其自主性。推理和记忆能力的改进将实现更复杂的决策、适应性和任务执行。

理解AI agent的框架

理解AI agent的框架

例如,2024年9月,法律AI初创公司Harvey宣布,OpenAI的o1推理模型,结合领域专业知识和数据,使其能够构建法律智能体。该公司在2025年2月以30亿美元估值融资3亿美元,过去6个月销售团队规模翻倍,表明市场需求增长。

虽然上述市场图谱主要突显私营企业景观(聚焦企业应用),但科技巨头和现有企业也在推出智能体。我们预测大型科技公司和领先的LLM开发商将主导通用AI agent,但小型专业化公司仍有诸多机会。

展望未来,值得关注超越助手/聊天机器人界面的新形态,这将拓展"agent"的边界。这方面的早期迹象包括"AI原生"工作空间——从头围绕AI能力构建的工具和平台,而非简单地在传统产品上叠加AI功能。例如:

  • Eve[1]的法律平台旨在自动化案件生命周期的各个方面(从案件接收到起草)。

  • Hebbia[2]的Matrix产品构建能从文件中挖掘信息(按行)并回答问题(按列)的电子表格,主动发现、组织和呈现数据。

  • The Browser Company[3]通过其Dia产品,探索能总结内容、自动化重复网络任务,甚至能预测下一步行动的网页浏览界面。

类别概览

AI agent基础设施

这一部分涵盖构建agent专用基础设施的公司。(我们排除了通用生成式AI基础设施市场[4],如基础模型和向量数据库)。

开发工具

已经出现了多样化的工具生态系统支持智能体开发。这些工具范围从像Letta[5]这样的记忆框架,使交互中的持久、可检索记忆成为可能;到允许智能体通过集成(如Composio[6])、认证(如Anon[7])和浏览器自动化(如Browserbase[8])采取行动的工具。

另一组公司在支付[9](包括为智能体开发加密钱包和虚拟卡的公司)和语音[10](开发平台和AI语音应用测试工具以及语音模型)领域为智能体提供更多实用功能。

同时,对简化、全面部署选项的需求推动了AI agent开发平台[11]的兴起——这是我们图谱中最拥挤的基础设施市场。

包括Cohere[12](通过其North AI工作空间)和Mistral[13]在内的LLM开发商已推出自己的agent开发框架,而Amazon[14]、Microsoft[15]、Google[16]和Nvidia[17]都提供AI agent开发工具。由于许多企业因风险较低而青睐成熟供应商[18],大型科技公司在这方面具有显著优势。

信任与性能

围绕可靠性和安全性的担忧促成了agent评估与可观察性工具[19]市场。早期公司针对自动测试(如Haize Labs[20])和性能跟踪(如Langfuse[21])等应用。

多智能体系统[22],即专业化子智能体协同完成任务[23],也在提高准确性方面显示出前景。Insight Partners支持的CrewAI[24]的多智能体编排平台据报道已被40%的财富500强企业使用。

供应商也直接解决可靠性问题。根据我们2025年第一季度与20多家AI agent初创公司的交流,公司建立用户信任主要使用5种方法:

  • 透明度

  • 人工监督

  • 技术保障

  • 安全与合规

  • 持续改进

图片

横向应用与职能

横向AI agent初创公司构成了图谱和整体格局的近一半。

这一部分主要包括面向企业的初创公司,提供跨职能的行业通用应用,如人力资源/招聘[25]、营销[26]和安全运营[27]。生产力与个人助理[28]市场的公司,包括带有Operator agent的OpenAI[29],直接面向消费者和员工。

根据公司的中位Mosaic健康评分,吸引力最大的AI agent市场是客户服务[30]和软件开发(包括编码[31]和代码审查与测试[32]智能体)。这些市场也是最拥挤的,原因是智能体在明确定义的工作流程和可测试环境中带来的价值[33]。

图片

我们在采用方面也看到了这一点,特别是在客户服务层面:在2024年12月CB Insights调查的64个组织中,三分之二表示他们正在使用或将在未来12个月内在客户支持中使用AI agent。

总体而言,与基础设施和垂直细分市场相比,横向AI agent应用在商业上更为成熟,根据CBI商业成熟度评分[34],超过三分之二的市场正在部署或扩展其解决方案。

AI agent的未来发展?

垂直(行业特定)应用

随着初创公司通过解决行业特定客户问题来开拓利基市场,我们预计垂直细分化将增加,尤其是在严格监管和数据敏感的领域。

这一类别包括服务于以下行业的公司:

  • 金融服务与保险: 图谱上最拥挤的垂直类别,有11家公司,初创公司针对各种金融服务工作流程,如金融研究(Boosted.ai[35]和Wokelo[36])、保险销售与支持(Alltius[37]和Indemn[38])以及财富顾问前景挖掘与运营(Finny AI[39]和Powder[40])。

  • 医疗健康: 此市场的解决方案旨在减少医疗专业人员的手动任务,涵盖临床文档、收入周期运营、呼叫中心和虚拟分诊等用例。像Thoughtful AI[41](收入周期运营)和Hippocratic AI[42](人员配置市场)等公司的解决方案针对端到端医疗保健工作流程。

  • 工业: 这些公司寻求优化流程和设备——包括控制系统、机器人和其他工业机器——而不依赖持续的人工干预。例如,Composabl[43]在2024年5月推出了一个agent平台,使用LLM为控制工业设备的智能体创建技能和目标。上市公司如Palantir[44]也活跃在这一领域。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值