2025年AI知识库大比拼:腾讯IMA与飞书知识问答,谁更胜一筹?

就现在来说,国内比较出名的产品有腾讯的IMA与飞书的知识问答平台,今天我们来一一介绍下,首先是腾讯IMA。

一、腾讯IMA

unsetunsetIMA简单使用unsetunset

图片

首先,选一下基座模型:

图片

很多旁支功能我们不去关注,首先创建一个自己的知识库《管理大纲,问题的根源》:

图片

随便上传一篇文章,他会用DeepSeek-V3模型生成一段摘要:

图片

于是,我马上去问他一个问题:管理到底重不重要呢,为什么?

图片

这个回答中规中矩,于是我开始追加问题:那管理到底重不重要呢,你也没回答我的问题啊?

图片

于是我继续追问:既然管理如此重要,为什么很多老板似乎不太重视管理呢?

图片

这里我继续用后面时间写的文章去与他对话:

图片

图片

unsetunsetIMA第一印象unsetunset

这里给出IMA使用的第一印象:

找不出系统任何不当之处,却也没有表现得更像一个真人

于是我们在这个基础上加一些控制提示词:你可以表现得像一个管理大师,像真人一样跟我对话吗?

这个时候DeepSeek不听话的劣根性开始体现:

图片

再问一次,表现也挺一般的(IMA可供选择的模型也不多):

图片

这里我最后问了一个具体场景的问题:

图片

图片

图片

图片

然后产品在案例搜索来说还是很容易找到我们要的内容的,比如问题:我需要一些具体的案例,你可以列举一些经典管理案例吗?

因为这篇文章是框架性文章的开篇,没有提出具体的案例,所以模型这里也给不出什么典型案例,于是开始了胡编乱造

图片

unsetunset全量数据unsetunset

为了让知识库回答得更好,我将40节课成全部上传:

图片

这里重新询问类似的问题,他搜索出来的资料就多了很多了:

图片

具体内容如下:

图片

我这里再整理下:在我的知识库里面,一共可以提炼出多少管理案例呢,每个管理案例又可以被打上什么标签?

图片

真实使用感受是:有点东西,但不多,这其实与两点有关系:

  1. 第一是知识库的整理方式;

  2. 第二是提示词或者问题;

这里我问得更细点:我现在在一个项目中,依赖的部门配合度很低,我应该怎么办呢,最好有理论有案例做实际指导,详细点。

图片

图片

这里再来个复杂问题:我最近要做一个为期两天的管理课题的培训材料,请你帮我准备下材料

图片

图片

图片

最后简单说下IMA的使用感受

腾讯IMA知识库感觉上是一款体验较好的个人知识管理工具

但有个地方我其实没搞明白:为什么不能使用在线文档,一定要我们自己整理成文件上传...

接下来我们看看飞书知识问答

二、飞书知识问答

事实上10年前那个样子,互联网人是比较“憎恨”某些大厂的,其原因是他特别喜欢抄袭很多小公司的创新成果,而又因为其财大气粗技术强,很容易做出体验更好的产品,然后就将一些小公司的后路堵死了。

这两年,另一个大公司基本在走某些大厂的老路,是一点生路不给小公司留啊,但不得不说他们的产品是做得挺好的...

unsetunset企业专属AI问答工具unsetunset

前几天,飞书出了个AI问答体系,与IMA不一样,他们号称是2B的,我们这里依旧一股脑的上传知识:

图片

然后直接来一道大题:我最近要做一个为期两天的管理课题的培训材料,请你帮我准备下材料

因为这里飞书知识问答使用的是R1,他的CoT还是很完整的:

图片

以下是具体结果:

图片

图片

图片

事实上,这里飞书知识问答和腾讯IMA可能差距不会太大,唯一的不同就是基座模型的选择问题,比如换回上一个问题:我现在在一个项目中,依赖的部门配合度很低,我应该怎么办呢,最好有理论有案例做实际指导,详细点。

图片

图片

怎么说呢,这里个人感觉IMA回答的似乎还有好点,但这里应该就是检索技术有些不同罢了,这类细微的差距会很快。

unsetunset利好企业unsetunset

怎么说呢?整个飞书知识问答系统使用下来的感受是:利好企业,不大有利于一般做AI知识库的小团队,他极大地降低了一般公司的知识库构建门槛,并且初步体验下来,体验是足够的。

腾讯IMA,更多还是在做个人知识梳理的工作,暂时没看出在企业侧更大的野心;但飞书不一样,他的目标似乎就是为了瞄准2B而来的!

其原因也很简单:飞书已经搭建好了整个AI 2B的生态!

无论是最初的飞书IM和体验巨好的飞书文档,后续又来了个多维表格基本可以处理所有的企业协同需求,为了提升体验还有扣子Agent平台配套。

综上,飞书体系在企业这个场景已经准备好了,他是一个体系化作战的套路,这里的意思是:

使用飞书体系的公司,自然而然的就拥有了AI知识问答系统!

造成这种情况的原因,可能是腾讯体系一直没太想在企业场景做太多工作,因为对标阿里的钉钉体系,钉钉也有完整的IM、钉钉文档,并且可以预见他们马上会推出AI知识库相关体系。

只不过钉钉与飞书又有些不同,他更喜欢让供应商们入驻,但在AI这个赛道下,不知道是不是坐得住,反正字节体系在AI产品侧的东西做得是蛮多的。

结语

今天,我们盘点了下国内AI知识库两块头部产品腾讯IMA以及飞书知识问答系统,总的来说:既符合预期,又差点意思.

另外这个赛道貌似好像还没看到钉钉的声音,只不过前些日子使用过钉钉的KAG架构,基于知识图谱的文档解析AI知识库系统,相信钉钉最近也会发声。

然后,为什么差点意思呢,原因可能在我创业失败的AI+管理的系统

图片

AI知识库稍微衍生一下其实就变成了AI Agent,知识库与Agent之间仅一步之差,以CEO数字分身为例:

图片

好的企业管理Agent,第一步是客观的展示公司信息,其中公司知识库仅仅是其中很小的一环,后续应该跟进的是员工状态、项目风险,甚至最后还要体现出系统架构的优劣等特性。

也就是AI知识库的进一步衍生,应该是一套AI公司咨询服务

在了解公司信息的状态下,提出各种建议,如文化建设、项目建议、奖惩建议等等

显然,如今无论是IMA还是飞书问答系统,还无法扮演一位CEO数字分身或者公司知识库管理员的人类角色,但这应该是下一步方向。

看了IMA和飞书体系后,其实我认为我之前的AI+管理创业方向也没错,只不过那可能不是我这样的人最终能实现的...

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值