从最初通过书籍资料进行搜索,变成互联网时代利用web网站进行搜索,再到移动互联网时代在社媒平台进行搜索,如今变成被火热讨论的新模态——利用AI进行搜索,不知不觉中人们的搜索习惯已经完成了多次跃迁。
在谈AI搜索将如何改变人们的搜索习惯甚至生活习惯之前,需要先聊聊中国第一款AI搜索产品。
2023年8月23日,昆仑万维低调发布了「天工AI」,国内第一款AI搜索,获得一众好评。此后国内大小厂商纷纷跟进推出AI搜索,但「天工AI」始终在各类AI搜索产品中保持着绝对优势的产品体验,或许我们可以从天工AI的发展历程中找到AI搜索的核心价值。
2023年4月,昆仑万维发布自研千亿级大语言模型「天工大模型」;8月,推出「天工AI搜索」,国内首个融入大模型技术能力的AI搜索产品;9月,在权威推理榜单Benchmark GSM8K 测试中,「天工大模型」以80%的正确率脱颖而出,推理能力接近GPT-4;同月,全球知名AI学者颜水成加入昆仑万维,担任天工智能联席CEO及2050全球研究院院长;10月,昆仑万维开源百亿级大语言模型“天工Skywork-13B”系列。
今年2月6日,昆仑万维又一次升级发布新版MoE大语言模型「天工2.0」及「天工AI」智能助手,这也是国内首个搭载MoE架构并面向全体C端用户免费开放的千亿级参数大语言模型的AI应用。
可以看到,「天工AI」一路承载着昆仑万维对AI技术的迭代创新和应用探索,也是始终坚持基于大语言模型打造、并一直快速迭代自我超越的AI搜索引擎。甚至可以说,「天工AI」是国内AI搜索的“鼻祖”。
那么为什么要融合AI大语言模型?融合了AI大模型能力后的AI搜索,究竟又强在哪里?从「天工AI」上,其实也可以窥得答案。
以深度融合「天工2.0」大语言模型能力的「天工AI」智能助手为例——因为采用了业内顶尖的MoE专家混合模型架构,对比其他AI搜索时会明显发现,其应对复杂任务能力更强、模型响应速度更快、训练及推理效率更高、可扩展性更强。
换言之,有了大语言模型加持的AI搜索,不仅回答质量与响应速度会得到极大的提升,还具备优秀的视觉理解、推理和指令遵循能力,能够满足图文对话、知识问答等多种用户需求,更能支持最高100K的超长上下文窗口(超过15万个汉字)。
比如当用户搜索“居家健身工具选哪些?”“怎么用吉他弹《青花瓷》?”这类问题时,能够得到图文并茂的答案,结果更直观,内容更丰富。
比如能够根据上下文语义与用户进行多轮次的深度对话,无论输入问句、短语还是关键词,都能完成“追问”,就一个问题/话题可以展开20轮次以上交互,以此实现深度搜索,而所有回答都能以秒为单位完成。未来除了文本,用户更可以以图片,文档,链接,语音或视频的形式进行搜索对话。
可以肯定的说,唯有搭载了大语言模型技术的AI搜索,才是真正的AI搜索——
从寻找内容,到获取答案。 传统搜索提供给用户的是海量“信息”,并需要用户自行进行甄别筛选。像「天工AI」这样融入了大模型能力的AI搜索则能提供生成式搜索,深入挖掘用户真实意图,并敏锐地捕捉到查询语句中的上下文关系,从而得到更精确、更相关、更合心意的搜索结果,不再为筛选冗余或无效信息浪费时间。
从获取模糊信息,到精准获得知识。 传统搜索只能提供关联信息,搭载大模型的AI搜索拥有更强大的关键词与语义分析能力以便更精准识别用户任务需求,除了搜索与对话,在阅读、创作等不同应用场景中,也能针对用户的不同需求提供更准确、更具体的回答与追问建议。
从鱼龙混杂,到可追溯可信赖。 区别于传统搜索经常给用户错误信息或广告误导,利用大模型技术的AI搜索能对互联网上海量内容进行识别和筛选,屏蔽虚假广告内容,再引入网站权威性、可靠性等其他影响因子,清洗出较为纯净、高质量的搜索结果。不仅能免费提供更精准的回答和建议,还能在所有回答中加入信源索引,以此保障答案可追溯、可考证、可信赖。
毫无疑问,进入AI搜索时代后,搜索体验得到了升维重塑;也期待以「天工AI」为代表的产品,能带来更多可圈可点、强实用性的应用功能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
