拥有你自己的Copilot!基于Llama3和CodeGPT部署本地Copilot,断网也能使用!

当谈到代码自动补全和辅助编程工具时,GitHub Copilot是一个备受推崇的选择。然而,有时我们可能希望在本地环境中构建一个类似的解决方案,以便更好地控制数据和隐私,更重要的是Llama3是免费,而Github Copilot是收费的。本文将分享如何基于Llama3和CodeGPT这两个强大的开源项目,搭建自己的本地Copilot。

部署Llama3模型

超越GPT-3.5!Llama3个人电脑本地部署教程中我已经分享过如何使用Ollama在本地部署Llama3模型,本文不再赘述。

安装CodeGPT扩展

打开Visual Studio Code,转到扩展标签页。搜索“CodeGPT”并安装这个扩展。CodeGPT是一个可以使用多种大语言模型辅助代码编程的插件。

注意:要认证发布者是CodeGPT,不要安装CSDN发布的!

image-20240425204658304

设置Llama3为CodeGPT默

### GitHub Copilot 离线解决方案 对于GitHub Copilot 显示脱机的问题,通常是因为络连接不稳定或是访问受限所致。为了确保能够持续获得代码补全其他辅助功能,在本地环境中构建一个类似于Copilot 的解决方案是一种可行的方法[^1]。 #### 使用 Llama3 CodeGPT 构建本地 Copilot Llama3 提供了一个免费且开源的选择来替代付费的 GitHub Copilot 。通过部署这些模型到本地环境,不仅可以绕过络限制,还能增强对个人数据的安全性隐私保护措施。具体操作步骤如下: - **获取预训练模型** 访问 Ollama 官方仓库中的发布页面,下载适用于目标平台架构版本的压缩包文件。例如针对 Linux AMD64 用户而言,则应选取 `ollama-linux-amd64.tgz` 文件进行安装准备[^2]。 ```bash wget https://github.com/ollama/ollama/releases/download/v0.5.7/ollama-linux-amd64.tgz tar zxvf ollama-linux-amd64.tgz ``` - **配置运行环境** 根据所选框架文档指导完成必要的依赖项安装以及环境变量设置工作;确保 Python 版本满足最低要求,并按照官方说明调整参数选项以优化性能表现。 - **启动服务端口监听** 利用命令行工具或图形界面管理器激活 API 接口并指定对外提供服务的具体 IP 地址与端口号组合。这样就可以让 IDE 或编辑器插件顺利调用该接口实现智能化提示效果了。 ```jsonnet { "api": { "host": "localhost", "port": 8080 } } ``` #### 结合极狐GitLab 实现更完善的开发体验 考虑到国内开发者面临的特殊挑战,极狐GitLab 成为中国市场上的理想选择之一。其不仅支持私有化部署模式下的源码托管需求,而且最近推出的驭码CodeRider 更进一步集成了先进的 AI 编程助手特性,即使在络中情况下也能正常运作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值