自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2290)
  • 收藏
  • 关注

原创 AI大模型应用开发全攻略:从入门到高薪的黄金路径,26年一定会大火的AI大模型应用开发!

文章介绍了AI大模型应用开发的进阶学习路径:从掌握Prompt工程到使用AI辅助编程,再到通过API调用开发应用,进而学习RAG和Agent等高级技术。文章强调实战先行,但指出要成为真正高手,仍需补足Python、向量数据库、NLP基础和Transformer原理等知识。最后建议通过参加比赛和积累项目经验来提升竞争力,获取高薪offer。

2025-12-15 15:09:35 1112

原创 程序员为什么要学习AI大模型?

在科技浪潮的推动下,人工智能(AI)技术已经成为推动软件行业发展的核心动力。而在AI技术的众多分支中,AI大模型以其巨大的潜力和广泛的应用场景,逐渐成为了程序员们关注的焦点。本文将从程序员的角度出发,探讨AI大模型的定义、应用,以及为何程序员需要深入了解大模型的相关知识。

2024-06-06 18:26:08 3631 2

原创 程序员入行AI大模型应用开发必须学算法吗?2026最新AI大模型应用开发的核心技术学习线路看这里

答案是**不一定**!以DeepSeek、Qwq等为代表的大模型已经开源,算法不再是唯一的门槛。那么,大模型应用开发的企业招聘情况如何呢?事实上,**大部分企业只有20%的岗位是算法岗,而80%的岗位是AI应用开发岗**。大模型的开源意味着AI时代更需要的是基于大模型的新生产力工具,而非纯粹的算法研究。

2026-02-04 20:11:48 196

原创 22岁女生如何从新闻专业转行成为字节AIGC产品经理

一位新闻传播专业女生通过参加薛老板的AIGC产品实战训练营,成功从创业公司实习起步,逐步进入腾讯和字节担任AIGC产品实习生。文章详细分享了三轮面试经历,包括AI基础知识、策略产品思维和问题解决能力的考察,以及面试官反馈要点。她强调转行路径是先做项目积累经验再进入大厂,并推荐了AIGC产品实战特训营作为转行有效途径。

2026-02-04 20:10:16 3

原创 大模型Agent Skills学习路线:从技能市场到数据预测,一篇搞定

文章介绍了Agent Skills的概念、学习资源和使用方法,特别是如何通过技能市场获取趋势预测技能并应用于数据分析。Skills本质是结构化、可复用的"高级使用说明书",指导大模型按特定顺序调用工具处理问题。提供了多个学习网站和资源链接,帮助读者快速掌握Agent Skills,提升AI应用开发能力。

2026-02-04 20:09:16 12

原创 零基础进阶大模型实战高手:从Transformer到企业级部署全攻略

《动手构建大模型》为零基础读者提供了一条从理论到实践的大模型学习路径。全书分为基础理论、核心技术和高阶应用三篇,涵盖Transformer架构、提示词工程、RAG、框架工具使用、智能体构建、微调及模型部署等内容。采用实战导向的项目驱动学习方法,提供Google Colab Notebook降低实践门槛,代码完整可复用。适合程序员转型AI工程师、企业应用开发者及高校师生,助读者从零基础成长为能独立开发大模型应用的实战高手。

2026-02-04 20:08:15 6

原创 10年产品总监揭秘:AI产品经理必备的6大核心能力与转型指南

10年AI产品总监分享,指出AI产品经理分模型层和应用型,需具备AI原生思维、技术理解力、交互设计能力和数据闭环能力。转型者应深度使用AI工具、建立技术知识图谱、从小场景实践,完成从确定性到概率性结果的认知升维。2025年岗位需求预计增长240%-420%,人才缺口300万。

2026-02-04 20:07:14 16

原创 为什么AI人才值钱?月薪1.8万只是开始,普通人如何抓住AI风口实现薪资跃迁

AI人才争夺战:高薪风口与普通人入局机会 全球AI人才争夺白热化,OpenAI实习生月薪达1.83万美元,谷歌、Meta等企业均开出高额薪酬。中国AI人才缺口超500万,腾讯、阿里等企业60%以上校招岗位聚焦AI领域。AI人才的核心价值在于"帮用户省时间,帮企业省成本",其高薪源于技术创造的市场溢价。 行业趋势显示,AI正渗透金融、医疗等多领域,复合型人才需求激增。学历门槛降低为零基础者提供机会,专业培训可实现职业跃迁。当前是布局AI赛道的黄金窗口期,掌握大模型开发等技能将获得显著竞争优

2026-02-03 20:44:45 937

原创 大模型训练全流程解析:从“书呆子“到“智能体“的蜕变之路

本文通过"培养天才学生"的生动比喻,将大模型训练划分为四个递进阶段:预训练(构建知识基础)、后训练与对齐(培养价值观)、推理增强(发展逻辑思维)和智能体与工具(掌握外部资源调用)。每个阶段对应特定技术方法,如Transformer架构、强化学习对齐、思维链推理等,最终使模型从单纯的知识库进化为能独立解决复杂问题的智能体。这种通俗化讲解降低了技术门槛,帮助读者理解大模型如何通过分阶段训练实现智能跃迁。

2026-02-03 20:42:44 449

原创 从传统PM到AI产品经理:零基础逆袭大模型时代的完整攻略

文章讲述传统PM转型AI PM的路径:认知重塑(确定性vs概率性区别)、技能重构(核心技术概念、评估思维、场景定义能力)、四步实战(沉浸式对话、Prompt工程、低代码Demo、理论补齐)。关键是把用户洞察力与模型能力结合,成为"产品架构师"+"创意总监",无需懂代码,只需掌握AI边界和工程思维,在不确定性中寻找商业价值。

2026-02-03 20:41:14 389

原创 RAGFlow工程师必看:微服务架构设计与企业级部署实践

RAGFlow开源RAG引擎解析:企业级智能问答系统构建指南 摘要:本文深入剖析了RAGFlow开源RAG引擎的技术架构与实现方案。该引擎采用微服务架构设计,核心包含DeepDoc智能文档解析、Agent工作流机制两大技术亮点,支持OCR识别、版面分析等高级功能。文章详细阐述了生产环境下的部署实践,包括Docker容器化配置、Elasticsearch索引优化、GPU加速等关键环节,并提供了异步任务流转、高可用保障等工程实现细节。通过完整的解决方案和实用指导,帮助开发者构建高性能、可扩展的企业级RAG系统。

2026-02-03 20:39:09 417

原创 IT行业转行大模型:五大热门岗位揭秘,抓住IT行业最后的风口!就在大模型!

摘要:文章介绍了大模型领域的热门岗位,重点分析了模型研发工程师和算法工程师的职责与要求。模型研发工程师主要负责深度学习模型架构的设计与优化,要求具备扎实的数学基础和创新能力;算法工程师则侧重于算法实现与业务落地,需要精通机器学习算法。两个岗位都要求熟练掌握Python及主流深度学习框架,适合对AI技术有热情的程序员转型。

2026-02-02 17:09:20 753

原创 LLM智能体架构设计与评估体系详解:从理论到实践,建议收藏

本文系统阐述了混合智能体架构的三层设计原理(反应式模块、协调层、深思熟虑模块),通过投顾AI助手案例展示了如何平衡效率与智能。详细介绍了LangSmith和DeepEval评估工具的使用方法,构建了"离线测试+线上监控"的完整评估体系,并提出三大方法论:架构适配场景、评估贯穿全生命周期、数据驱动优化,为LLM Agent应用落地提供了实用指导。文章特别强调了混合智能体通过动态模式切换模拟人类"本能反应+理性思考"的决策机制,并结合投顾场景展示了状态管理、任务分类等关键

2026-02-02 17:07:40 408

原创 大模型四大支柱RAG/Skill/Memory/Workflow实战指南:从概念混淆到产业落地

文章澄清了大模型应用四大核心支柱RAG、Skill、Memory、Workflow的本质与关系,破除行业常见认知误区。强调产业落地应回归工程本质,简单通用方案优于复杂技术。RAG作为统一召回底座不可替代,Skill做语义连接封装,Memory实现动态个性化,Workflow负责流程编排。四者协同而非对立,才能将大模型技术真正应用于产业场景,实现数据高效利用与业务价值交付。

2026-02-02 17:06:24 633

原创 大模型(LLM)完全指南:AI范式转变与认知基础设施详解

大模型(LLM)正推动AI范式变革,从单一任务工具转向通用认知引擎,重构人机协作模式。其核心特征包括海量参数、多任务泛化能力及知识密集型预测功能。发展历程经历了从语言建模到多模态融合的跨越,现已成为AI主引擎,与生成式AI(应用形态)和智能代理(认知核心)深度关联。大模型将重塑组织认知流程,改变信息获取、内容生成和决策支持方式,成为新型认知基础设施。学习路径涵盖系统设计、提示工程、平台开发等7阶段,配套丰富资源和实战案例,助力掌握大模型全栈能力。

2026-02-02 17:03:44 534

原创 程序员必学:大模型核心概念解析与实战应用指南

大模型技术解析与应用概览 大模型是基于海量数据(如GPT-3的570GB清洗数据)和强大算力(需数百GPU协同)训练的深度学习模型,具有四大核心特征:大规模训练数据、深层Transformer架构(多层编码器/解码器)、超大规模参数(从数亿到万亿级)及高算力需求。当前,这类模型已广泛应用于医疗诊断(如"神农"儿科辅助系统)、智能教育(个性化学习推荐)和工业质检(盘古视觉质检)等领域,展现出AI技术在垂直场景中的快速落地能力。通过微调开发,大模型可适配健康、零售等特定行业需求,推动产业智能

2026-02-02 17:00:31 504

原创 Java程序员进军大模型:转型指南+学习路径+高薪岗位全解析_程序员转行AI大模型教程(非常详细)

Java程序员转型大模型开发的完整指南:从基础概念到职业路径 本文为Java程序员提供系统化的大模型开发转型方案,涵盖5个关键步骤:机器学习基础、工具框架掌握、编程能力提升、数学知识补充和项目实践。分析Java程序员在软件工程经验上的独特优势,并详细列举AI大模型时代涌现的7类高价值技术岗位(如AI工程师、模型架构师等)。同时梳理AI工程师必备的10大知识领域,包括数学基础、深度学习框架和自然语言处理等。文章还指出当前大模型岗位缺口达47万,初级工程师平均月薪28K,并附赠全套大模型学习资料包(书籍、报告、

2026-01-31 14:06:49 651

原创 AI智能体记忆技术全解析:从入门到精通,让LLM具备持续学习能力(建议收藏)

本文综述了AI智能体记忆技术,提出按形式、功能和动态三个维度组织的统一分类框架。文章明确区分了智能体记忆与LLM记忆、RAG和上下文工程等概念,指出智能体记忆具有动态更新、持续学习等核心特征。通过介绍Self-Evolving Memory、Multimodal Memory等代表性技术,为解决LLM静态参数的局限性提供了思路,使AI智能体能够实现长期适应能力。

2026-01-31 14:05:33 467

原创 一文掌握Opik监控RAG应用,告别大模型“玄学“表现

本文介绍了如何利用Opik工具监控和评估RAG应用系统,解决大语言模型(LLM)应用中常见的性能不稳定问题。文章详细阐述了Opik的配置流程、与LlamaIndex的集成方法,以及RAG应用的构建步骤。通过创建评估数据集、定义关键指标(如幻觉检测、答案相关性等),开发者可以全面追踪检索质量和生成效果,识别问题并优化系统性能。Opik的监控功能帮助确保LLM应用的可靠性和一致性,有效解决RAG系统"时好时坏"的表现问题,为构建稳定的大模型应用提供了系统化解决方案。

2026-01-31 14:04:43 545

原创 AI Agent决策机制深度解析:从输入指令到自我进化的完整流程

AI Agent决策机制解析:从感知到执行的智能闭环 摘要:本文深入浅出地解析了AI Agent的决策运行机制,揭示了其"感知→思考→行动→反思→再优化"的闭环过程。通过理解目标、调取记忆、制定计划、反思调整四个步骤,结合五大模块协同工作,使AI具备上下文感知、动态适应和持续学习三大特质。这种机制让AI从简单问答工具进化为有策略、有记忆、有执行力的智能体,能像人类助理一样理解需求、规划任务并持续优化服务。文章通过安排会议、周末放松等生活化案例,生动展示了AI Agent如何通过多模块协同

2026-01-31 14:03:43 610

原创 大模型时代,个人创业的出路与企业制胜的关键

2026年AI创业泡沫破裂:市场分析与应对策略 2026年AI创业市场面临重大调整:一人公司热潮导致低质产品泛滥,线上流量成本飙升且效果下降。企业应转变策略,采取"AI空军+线下步兵"组合模式:利用AI低成本获客,结合实地拜访建立信任。内部需全面AI化,将重复工作交给AI,员工专注于客户洞察和产品研发。商业模式应从卖软件转向卖结果交付,将AI作为底层工具而非核心产品。真正的竞争壁垒在于私有数据和行业经验,而非通用AI技术。商业本质始终未变:深入行业场景,理解客户需求,提供切实解决方案。企

2026-01-31 14:02:47 535

原创 为什么要学习大模型应用开发?2026大模型学习宝典:零基础入门到高薪offer的进阶之路

大模型已成为职场必备技能,不会使用可能被淘汰。仅会基础操作不够,需掌握Prompt工程和微调技术才能拉开职场差距。大模型行业需求爆发,掌握相关技术可获得高薪机会。互联网行业高薪源于新技术爆发与供应不足的供需关系。本文提供系统学习路线和资源,适合零基础入门者,帮助理解大模型底层原理并掌握实际应用能力。

2026-01-30 20:43:01 683

原创 AI+企业办公:8大核心应用场景深度解析,从入门到精通

本文解析了AI+企业办公的8大核心应用场景,包括智能文档处理、演示制作、数据分析、会议管理、流程自动化、知识管理、环境优化和人力资源发展。每个场景涵盖理论基础、实践应用和方法技巧,并提供具体案例。文章介绍了AI办公系统的实施路径和未来趋势,指出企业应建立AI卓越应用中心,加强员工AI技能培训,实现人机协同的最佳平衡,最终实现组织效能的全面提升和数字化转型。

2026-01-30 20:41:36 484

原创 2026国产大模型全面爆发:从参数竞赛到实用价值跃迁,程序员必学收藏指南

2026年国产AI大模型迎来技术突破期,DeepSeek、阿里巴巴等企业推出高实用性模型,标志着AI从参数竞赛转向场景化应用。DeepSeek-OCR2通过模拟人类阅读路径提升文档识别效率,阿里Qwen3-Max-Thinking则实现万亿参数的性价比突破。这些创新推动AI产业链从算力到应用的需求重构,使大模型真正成为企业级生产工具。金融、医疗等行业率先实现商业化落地,国产AI正从技术并跑迈向产业领跑阶段。

2026-01-30 20:40:15 649

原创 2026云+AI应用研究报告:行业大模型落地实战指南

行业大模型正成为产业智能化升级的核心驱动力,云计算作为AI创新的基础支撑,推动AI行业云平台快速发展。报告显示,AI行业云平台凭借数据、安全、生态等五大优势,成为行业AI应用的最佳载体,可提供高质量数据训练、保障安全合规并降低开发门槛。随着大模型应用爆发,相关人才缺口达47万,初级工程师平均月薪28K。为助力AI能力提升,"AI大模型·领地"知识星球提供1万+学习资料,涵盖提示工程、RAG系统等核心技术,帮助从业者把握AI时代机遇,实现职业进阶。

2026-01-30 20:39:19 610

原创 大模型落地实践:97个精选案例助你掌握AI前沿应用技术

《大模型应用案例集》发布:97个精选案例展现AI落地趋势 阿里云联合99家合作伙伴发布的《大模型典型示范应用案例集》,从数百案例中精选97个标杆项目,分为行业赋能(43个)、智能应用(46个)和生态服务(8个)三大类,覆盖医疗、金融、能源等10余个行业。报告显示五大核心趋势: 上海贡献超50%案例,成为大模型应用高地; 大中型企业占比80%,是创新主力军; AI智能体应用占比达23%,成为技术热点; RAG知识库技术成为落地关键支撑; 医疗、金融、政务成为最活跃应用场景。案例集包含智能采编系统、法律大模型、

2026-01-30 20:38:23 639

原创 开发者必读!AI大模型入门教程,内含300道面试真题!非常详细收藏我这一篇就够了

当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!伴随着人才需求增大,AI 大模型新发岗位平均月薪也由 2023 年的 ¥45812 上升至 ¥46452,远超新经济行业平均水平。

2026-01-29 16:16:21 895

原创 收藏这篇!一文掌握云雀智能体:从原理到实践构建专业级AI助手

腾讯PCG团队开源的云雀智能体是一套自主通用智能体系统,区别于传统聊天机器人,它专注于深度研究、事实核查等复杂场景。该系统具备搜索、阅读、任务拆解、结构化记忆、失败自纠等能力,运行过程可追踪、可复盘。通过六大场景测试,展示了其在视频审核、谣言识别、舆情追踪、资质审核、课程制作和代码开发等方面的强大能力。核心技术包括主动异常监督、动态结构化记忆、混合工具调度和全局编排,为AI Agent从"聊天伙伴"向"全能业务助理"进化提供了新思路。

2026-01-29 16:12:36 630

原创 上下文工程:AI应用开发者的必学技能,建议收藏!

摘要:本文提出上下文工程是构建高质量AI应用的核心技能,指出多数团队过度关注模型选择(15%)和提示词(10%),忽视了占75%权重的其他关键因素。文章系统阐述了上下文工程的六大组件:提示词技术(包含少样本提示和高级思维链技术)、查询增强(解决用户查询模糊性问题)、长期记忆(实现跨会话信息保存)、短期记忆(优化对话上下文管理)、知识库检索(连接组织数据资产)及工具与智能体。强调只有系统性地设计和管理信息流,才能真正发挥AI应用的潜力。

2026-01-29 16:11:26 675

原创 RAG系统优化:不同召回方式如何选择最佳chunk策略?收藏这篇,让你的大模型应用效果翻倍!

文章探讨了RAG系统中召回策略与chunk策略的关系。指出语义召回和关键字召回需要不同的chunk处理方式:语义召回看重语义相似性,允许overlap;而关键字召回更适合段落或句子级别的chunk。当混合使用两种召回方式时,需要找到平衡点。一种解决方案是按段落和句子拆分,配合强大的embedding模型,以在语义相似度和关键字检索间取得平衡,从而最大化RAG系统效果。

2026-01-29 16:10:17 943

原创 转行AI大模型,30岁也不晚!收藏这份高薪就业路线图_30岁转行AI大模型,别让时间再浪费!

文章详细介绍了AI大模型行业的广阔前景和薪资水平,涵盖算法工程师、数据科学家等多样化就业岗位,提供从入门到进阶的7阶段系统学习路线,并包含报告合集、经典书籍和实战案例等全套学习资源,强调系统学习对掌握这一高需求、高待遇热门技能的重要性。

2026-01-27 14:55:21 1037

原创 AI智能体系统全解析:从架构设计到落地应用,一文掌握大模型前沿技术

本文系统综述了AI智能体系统的研究进展,提出Agent Transformer统一架构范式,将智能体抽象为策略模型、记忆系统、工具集、验证器与环境的有机结合。研究构建了三层学习体系,涵盖强化学习、模仿学习等核心范式,并分类梳理了6大应用场景。同时建立了包含任务成功率、效率成本等五维评估框架,通过标准化基准测试验证性能。研究指出工具验证、记忆管理等四大挑战,为AI智能体从理论到实践的转化提供了系统指导。

2026-01-27 14:54:08 916

原创 一文搞懂BGE-M3向量模型:从代码实现到企业级Web服务部署指南

本文介绍了BGE-M3向量模型的集成与部署方案,包括本地调用和Web服务两种实现方式。核心内容涵盖:1)通过transformers库加载模型并实现BgeModel类,包含初始化、平均池化和嵌入向量生成功能;2)企业级应用场景下将模型封装为Web服务(基于Django框架)的实践方法;3)提供本地直接调用和HTTP接口调用的完整代码示例。文章特别强调了对不同硬件设备(CPU/GPU/NPU)的适配处理,适合构建企业级RAG知识库系统时参考使用。

2026-01-27 14:52:41 917

原创 Qwen3-VL:突破性的256K上下文视觉语言模型技术解析,程序员必学指南

Qwen3-VL是Qwen系列最新推出的高性能视觉语言模型,支持256K token的交错上下文处理,能无缝整合文本、图像和视频数据。该模型包含密集和MoE架构两类变体,通过创新技术如交错MRoPE位置编码、DeepStack视觉对齐和显式时间戳等,在多模态基准测试中表现卓越。训练采用分阶段策略,从基础对齐到长上下文适应逐步提升能力。Qwen3-VL不仅保持了强大的文本理解能力,还显著提升了多模态推理性能,成为跨模态应用的理想选择。

2026-01-27 14:38:48 713

原创 A2A协议详解:解锁多智能体协作的底层逻辑

A2A协议是智能体间通信的开放标准,解决单一智能体处理复杂任务的局限性。文章详细解析了A2A的核心概念、协议流程和生态协同,强调其在实现跨框架智能体互操作、高效协作和生态兼容方面的重要性。A2A通过定义智能体身份识别、任务传递和信息交换的规范,支持多智能体系统的高效协同。与MCP协议互补,A2A将在企业自动化和跨领域服务集成中发挥更大价值,推动AI从单点赋能走向系统赋能。

2026-01-27 14:36:16 529

原创 2025下半年大模型狂热升级,程序员收藏学习,薪资暴涨40%+_大模型岗位薪资爆了,年薪百万轻轻松松

摘要:2025下半年大模型行业持续爆发,百度、阿里等巨头加速布局,AI人才缺口扩大,薪资涨幅超40%。为帮助程序员抓住AI红利,文章提供从入门到进阶的完整学习路线,包含提示词工程、RAG、Agent等核心技术,并免费分享104G学习资源包(含视频教程、电子书籍、面试题库等)。该资料由资深专家团队整理,适合各层次学习者,助力掌握大模型全栈技能,实现职业转型或提升竞争力。(149字)

2026-01-26 22:50:07 1207

原创 一文搞懂LLM、RAG、Agent、MCP:AI技术的四大支柱与协作关系

本文系统阐述了AI四大核心技术:LLM作为底层大脑提供基础认知能力但存在知识冻结和幻觉问题;RAG通过外部检索增强知识准确性;Agent实现目标驱动的主动思考和任务规划;MCP标准化工具接口实现AI与外部系统连接。四者协同使AI从对话工具进化为能查资料、会思考、可执行任务的智能体,并以投资分析为例展示了技术协同应用场景。作者强调这些技术的融合将推动AI向真正"能解决问题"的数字员工进化,并提供了大模型学习资源包获取方式。

2026-01-26 22:47:38 1021

原创 MNN大模型应用开发指南:从安装到API调用全流程

本文介绍了阿里巴巴开源的轻量级深度神经网络引擎MNN及其移动端大模型应用MNN Chat。文章详细说明了iOS和Android平台的安装方法,并展示了核心功能包括模型下载、对话交互和语音对话。通过性能评测和API配置演示,指导开发者如何集成Hunyuan-0.5B-Instruct-MNN模型,提供HTTP API和LangChain库的调用示例。此外,还分享了AI大模型学习资源包,包含视频教程、技术文档和面试指南,帮助开发者从入门到精通掌握大模型技术。

2026-01-26 22:43:45 824

原创 2026最新大模型学习路线:从入门到实战的全栈指南_2026年自学AI大模型从入门到精通,千万别学反了!

本文介绍了一套全面的大模型学习资源包,包含基础篇(核心原理与提示工程)、进阶篇(RAG与Agent架构)和实战篇(微调与部署)。资源涵盖视频教程、学习路线图、精选电子书籍、面试题详解等内容,适合AI领域新人学习使用。该资料由资深从业者与博士团队共同整理,强调理论与实践结合,帮助学习者快速掌握大模型技术,实现职业转型。资源免费提供,旨在让更多人获得优质AI教育机会。

2026-01-26 22:42:33 399

原创 从零构建大模型记忆系统:小白也能掌握的AI记忆技术

本文探讨了构建大语言模型记忆系统的技术方案,从基础对话历史存储到面向智能体的高级记忆架构。首先通过Python代码实现简单的短期记忆功能,分析其存在的Token成本、上下文窗口限制等缺陷。针对Agentic AI系统需求,提出超越向量数据库的解决方案,建议采用知识图谱管理语义记忆,有限状态机处理程序记忆,最终构建混合记忆架构。文章特别强调长期记忆对复杂任务型AI系统的重要性,并指出当前向量数据库在对话记忆管理中的核心作用。

2026-01-26 22:40:47 898

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除