- 博客(1083)
- 收藏
- 关注

原创 2024年史上最难就业季,该如何逆风翻盘?
IT互联网依然是大学生最向往行业,制造业受欢迎度升高智联招聘调研数据显示,2024届求职毕业生期望行业中,IT/通信/电子/互联网、政府/非盈利机构、文化/传媒/娱乐/体育行业位列前三,占比分别为26.4%、9.4%、8.9%。IT互联网行业为应届生贡献很多就业岗位,也是应届生最向往的行业。
2024-06-20 13:43:59
3465

原创 AI产品经理,应掌握哪些技术?
当下,人工智能AI产品经理这一块不失为一个好的发展方向吗,如果你想要快速入局却又找不到方法,那么在这里我为大家总结了一套系统的学习方法,方便大家成型的学习,有需要的朋友可以扫描下方二维码,免费获取更多相关学习资料。
2024-06-17 19:47:49
1428

原创 金融与大模型:引领行业未来的创新融合
金融与大模型的结合是行业发展的必然趋势,也是金融行业实现数字化转型和创新发展的关键。面对这一机遇和挑战并存的局面,我们应积极拥抱变革、勇于创新实践。通过强调金融大模型的优势、打造成功案例、建立合作关系和创新服务模式等多种手段相结合的方式,共同推动金融大模型在行业的广泛应用和普及发展。那么,我们该如何学习大模型?作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。
2024-06-13 13:44:07
3017

原创 程序员为什么要学习AI大模型?
在科技浪潮的推动下,人工智能(AI)技术已经成为推动软件行业发展的核心动力。而在AI技术的众多分支中,AI大模型以其巨大的潜力和广泛的应用场景,逐渐成为了程序员们关注的焦点。本文将从程序员的角度出发,探讨AI大模型的定义、应用,以及为何程序员需要深入了解大模型的相关知识。
2024-06-06 18:26:08
3341
1
原创 2025年最新大模型学习路线规划:零基础入门到精通,全面掌握大模型开发技能!大模型学习路线
本文介绍了学习AI大模型的七个阶段,从基础理论入门到前沿技术探索,逐步深入掌握大模型的核心技术、编程基础、实战项目、高级应用开发、模型微调与私有化部署等技能。通过学习,学员能够基于大模型全栈工程实现,解决实际项目需求,掌握GPU算力、LangChain开发框架和项目实战技能,完成热门大模型垂直领域模型训练,提升编码能力和分析能力。文章还提供了丰富的学习资源,包括AI大模型学习路线图、商业化落地方案、视频教程、PDF书籍、面试题合集和AI产品经理资源合集,帮助学员全面提升大模型应用开发能力。
2025-05-12 14:16:34
837
原创 2025年大模型产品经理转型指南:零基础入门到精通的全面详细教程,一篇掌握所有关键知识点!
大模型作为AI领域的重要趋势,具备强大的泛化能力和适应能力,正逐渐改变技术应用场景。对于AI产品经理而言,转行做大模型需要具备对AI技术的深入理解、数据敏感度、用户需求洞察力、产品设计思维以及团队协作能力。评估自身是否适合转行,可以从对AI技术的兴趣、数据处理能力、用户需求理解、产品设计技巧和团队协作态度等方面进行判断。若具备较高水平,可大胆转行;若存在不足,可逐步提升技能并积累实践经验;若兴趣或优势不足,则可考虑其他领域。学习大模型相关知识,可从神经网络、深度学习、变换器架构等原理入手,结合权威教材和前沿
2025-05-12 14:14:21
396
原创 什么是RAG? RAG技术入门指南:小白也能轻松掌握的大模型RAG技术实践总结
RAG(Retrieval-Augmented Generation)技术结合了信息检索与生成模型,旨在通过检索大量信息并生成准确、丰富的回答。其核心步骤包括索引、检索和生成。索引阶段对文档进行预处理,检索阶段从知识库中快速找到相关信息,生成阶段则利用先进模型整合信息并生成上下文相关的回答。RAG技术在大模型(LLM)中应用广泛,尤其在智能客服领域,能够提升服务效率,减少生成幻觉,并通过更新外部知识库保持信息时效性。智谱RAG方案通过信息检索模块、生成模块及系统集成与优化,进一步推动了该技术在智能客服中的应
2025-05-12 14:12:10
391
原创 什么是Agent?深入解析Agent的核心概念与理解之道
Agent作为大模型技术的重要应用,其定义和功能在业界尚未完全统一。OpenAI提出了两种定义:一是能够独立完成任务的系统,二是配备指令和工具的大语言模型。Agent的核心在于其自主理解、规划决策和执行复杂任务的能力,被视为智能时代的App形态。大语言模型(LLMs)作为Agent的基础,通过循环生成Token的方式处理信息,但缺乏获取新知识和调用外部工具的能力。知识问答助手(RAG)通过保存会话上下文和引入私有知识库,扩展了LLMs的能力,而AgenticRAG则进一步融合了Agent的动态规划和自主决策
2025-05-12 14:09:25
534
原创 这份谷歌提示词指南,让你秒变Prompt高手!
随着ChatGPT、Gemini等大型语言模型(LLM)的广泛应用,如何有效与AI对话并引导其完成任务成为关键。提示词工程(Prompt Engineering)正是这一过程的核心技能,它通过设计高质量的提示词,引导LLM生成准确、相关且符合预期的输出。提示词工程不仅适用于数据科学家,也是每个与LLM互动者应掌握的能力。谷歌发布的《提示词工程说明手册》详细介绍了从基础到进阶的提示词技术,如零样本与少样本、设定身份与场景、提升模型推理能力等,并提供了最佳实践建议,如保持简洁清晰、明确输出要求等。掌握提示词工程
2025-05-12 14:06:58
430
原创 RAGflow安装教程:保姆级指导,小白也能快速上手!
文章首先介绍了RAGflow,一个开源的检索增强生成引擎,它在文档管理方面具有优势,能够帮助用户构建高准确性和可信度的智能知识库。接着,文章详细描述了RAGflow的安装过程,包括代码下载、Docker服务管理、端口修改、状态查看以及遇到的问题和解决方案。最后,文章分享了一个关于AI大模型学习的详细路线图,包括系统设计、提示词工程、平台应用开发、知识库应用开发、微调开发、多模态大模型应用以及大模型平台应用与开发等多个阶段,并提供了获取相关学习资源的方式。
2025-05-12 14:04:36
470
原创 2025最详细的学习路线,零基础入门大模型教程,让你少走99%弯路!【值得收藏】
大模型AI学习路径分为七个阶段,涵盖从基础理论到高级应用开发的全过程。第一阶段介绍大模型的基本概念和背景,包括人工智能演进、GPT模型发展等。第二阶段深入解析核心技术,如Transformer架构、预训练和微调技术。第三阶段聚焦编程基础与工具使用,掌握Python和提示工程。第四阶段通过实战项目(如代码生成、文档助手)提升应用能力。第五阶段学习高级应用开发,包括大模型API、RAG和向量数据库。第六阶段涉及模型微调与私有化部署,学习HuggingFace等工具。第七阶段探索前沿技术,如多模态模型和参数高效微
2025-05-10 14:05:54
828
原创 从大数据到AI:我为何选择转行大模型领域,揭示个人职业转型之路
作为一名经验丰富的大数据开发工程师,我决定转型至大模型应用开发,这一选择基于对技术趋势、市场需求和职业发展的深入分析。大数据技术已逐渐成为基础设施,而AI与大数据的融合则推动了复杂AI模型的广泛应用。大模型作为AI与大数据的集大成者,展现了巨大的发展潜力。我的大数据处理能力、分布式系统经验以及从ETL到MLOps的演进,为这一转型提供了自然过渡。此外,企业对AI解决方案的需求激增、大模型应用的多样性以及人才缺口,为大模型开发提供了广阔的市场前景。这一转型不仅拓展了我的技术广度,还为职业发展开辟了新的路径,甚
2025-05-10 14:04:21
855
原创 大模型(LLM)与智能体(Agent):深入了解两者间的关键区别
大模型(LLMs)与智能体(Agent)在功能和应用场景上有显著区别。大模型如GPT、BERT专注于自然语言处理,擅长文本生成、翻译、问答等任务,技术实现上依赖深度学习和自监督学习。智能体则具备感知、决策和行动能力,可应用于自动化系统、游戏AI、工业自动化等领域,技术实现结合深度学习、强化学习等多重技术。两者在智能客服等场景中有交集。随着大模型的广泛应用,相关岗位需求激增,学习大模型成为职业发展的重要方向。建议通过系统学习,掌握提示词工程、RAG系统、智能体开发等技能,抓住这一技术风口。
2025-05-10 14:00:46
790
原创 GitHub超3万星!LLM大模型入门教程,业界最热门资源一网打尽
这篇博客介绍了一门关于大型语言模型(LLM)的课程,分为三个主要部分:LLM基础、LLM科学家和LLM工程师。LLM基础部分涵盖了机器学习所需的数学知识、Python编程技能以及神经网络的基本概念。LLM科学家部分专注于如何构建和优化LLM,包括模型架构、数据集构建、预训练和微调技术。LLM工程师部分则关注如何将LLM应用于实际场景并进行部署。课程提供了丰富的学习资源,如视频教程、书籍和开源工具,帮助学习者从理论到实践全面掌握LLM的开发与应用。
2025-05-10 13:59:12
661
原创 必看!大模型训练圣经《从头训练大模型》免费PDF分享
《Current Best Practices for Training LLMs from Scratch》是由Weights & Biases(W&B)发布的一份关于从头训练大型语言模型(LLMs)的权威指南。该白皮书详细探讨了LLMs训练的最佳实践,涵盖了数据收集与处理、模型架构选择、训练技巧与优化策略、模型评估与部署等关键环节。指南首先讨论了是否应从头训练LLM或使用现有商业API或开源LLM,接着介绍了训练LLM的三种基本方法:使用商业LLM的API、使用开源LLM、以及自己预训练LLM。此外,指
2025-05-10 13:55:06
526
原创 AI Agents入门教程之Workflow vs Agent
本文深入探讨了AI工作流与AI智能体的区别及其应用场景。AI工作流通过预定义路径协调任务,适用于结构清晰的任务;而AI智能体则具备动态决策能力,适合复杂、灵活的任务。文章详细介绍了多种工作流类型,如提示链、并行化、路由机制等,并展示了智能体系统的实现框架,如LangGraph、Amazon Bedrock等。此外,文章强调了在开发AI系统时应从简单方案入手,仅在必要时引入复杂架构,并提供了相关代码示例和最佳实践建议,帮助开发者构建可靠、高效的AI应用。
2025-05-10 13:52:02
997
原创 OpenAI 发布企业运用 AI 大模型的 7大场景
OpenAI提供了两种主要类型的模型:推理模型(如o1和o3-mini)和GPT模型(如GPT-4o)。推理模型擅长处理复杂任务,适合需要深入思考和策略规划的领域,如金融、法律和科学。GPT模型则更注重速度和成本效益,适合执行明确定义的任务。开发者应根据任务需求选择模型:若需高准确性和复杂问题解决,选择推理模型;若需快速执行和成本控制,选择GPT模型。OpenAI还分享了推理模型的七大应用场景,包括处理模糊任务、从大数据集中提取关键信息、多步骤智能规划等,展示了其在金融分析等领域的成功案例。
2025-05-10 13:47:43
584
原创 神仙级大模型教程分享,大模型学习路线(2025最新)非常详细收藏这一篇就够
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1. 数学基础学习资料2. 编程基础学习资料第二阶段:机器学习基础这一阶段主要涉及经典机器学习算法的学习,以及如何使用它们解决实际问题。1. 机器学习理论学习资料第三阶段:深度学习入门在这个阶段,您将学习深度学习的基本概念和框架。1. 深度学习基础学习资料2. 深度学习框架学习资料第四阶段:自然语言处理基础本阶段将介绍自然语言处理的基本概念和技术。
2025-05-09 15:39:20
1005
原创 大模型开发入门:一文精通Fine-tuning(大模型微调)!
*的本质**********Fine-tuning(微调):**一、微调的定义大模型微调是利用特定领域的数据集对已预训练的大模型进行进一步训练的过程。它旨在优化模型在特定任务上的性能,使模型能够更好地适应和完成特定领域的任务。二、微调的核心原因定制化功能:微调的核心原因是赋予大模型更加定制化的功能。通用大模型虽然强大,但在特定领域可能表现不佳。
2025-05-09 15:37:34
657
原创 如何赋能医疗AI大模型应用?
自ChatGPT掀起热潮以来,众多AI大模型如雨后春笋般涌现,其中包括百度科技的文心一言、科大讯飞的讯飞星火、华为的盘古AI大模型、腾讯的混元AI大模型以及阿里哪吒大模型等。业界戏称这一现象为“百模大战”。不仅如此,这些通用AI大模型还逐渐渗透到各个垂直行业中,其中生命科学和医疗健康行业成为了拓展速度较快的一个领域。从2023年2月至10月初,国内市场上便出现了近50个针对医疗领域的大型模型。
2025-05-09 15:26:14
1034
原创 大模型在运维场景中的应用
企业IT运维一体化场景涵盖了多个运维活动,日常维护、变更发布、故障应急、服务响应、优化提升、安全管控等均需要跨多个运维领域完成,场景驱动了各个业务域之间的业务集成和技术集成设计。在现代企业中,DevOps是确保系统高效运行的关键领域。然而,随着技术环境的日益复杂,运维团队面临着越来越多的挑战。尤其在处理大量数据和迅速应对突发情况时,传统的运维工具和方法显得力不从心。大模型技术应运而生,为运维中的知识管理带来了革命性的变化。智能运维实践可以帮助企业更好地理解和管理这些复杂的系统。
2025-05-09 15:24:12
584
原创 Gemini 2.5 Pro Preview 05–06:一款面向开发者的 AI 编程助手
Gemini 2.5 Pro Preview 05–06 以“面向开发者”“注重可用性”为核心,不仅能生成高质量前端代码,还能理解视频教程并输出互动式学习工具。在日常开发、快速原型和代码重构场景中,能有效提升效率、减少沟通成本。如果你正寻找一款“更懂开发者”的 AI 编程助手,不妨亲自试试这款新版本。
2025-05-09 15:19:39
790
原创 9000字落地实操:AI做用户购后评论洞察分析
从海量用户评价中剖析出市场需求,无异于沙里淘金。一方面在于用户评价很多时候是不痛不痒的「中评」,看不出来顾客到底想表达什么?另一方面在于「海量」,评价太多了,根本看不完,如果用传统的python等工具分析,工作量又非常大。更不用说:
2025-05-09 15:15:47
549
原创 一下午面了三个AI产品经理,一问三不知!AI产品经理面试秘籍:高频问题及答案全解析!
作为AI产品经理,首要的职责都是去定义一个 AI 产品。这包括,搞清楚这个行业的方向,这个行业通过 AI 技术可以解决的问题,这个 AI 产品具体的应用场景,需要的成本和它能产生的价值。这就要求 AI 产品经理除了具备互联网产品经理的基础知识之外,还需要了解 AI 技术的边界,以及通过 AI 技术能够解决的问题是什么。
2025-05-08 17:47:00
920
原创 AI产品经理VS传统产品经理:工作差异详解,非常详细收藏这一篇就够!
AI 产品经理是直接应用或间接涉及了 AI 技术,进而完成相关 AI 产品的设计、研发、推广、产品生命周期管理等工作的产品经理。具体来说,狭义 AI 产品经理直接应用了语义、语音、计算机视觉和机器学习这 4 个领域的 AI 技术,例如语义类 AI 产品经理中的知识图谱 PM、机器翻译 PM 等;广义 AI 产品经理间接涉及了这些技术或直接应用了其他还不够成熟的细分领域 AI 技术。
2025-05-08 17:44:21
810
原创 大模型LLM Qwen2.5全攻略:全链路体验、下载、推理、微调、部署实战,非常详细收藏这一篇!
在数学专用语言模型方面,通义千问上个月发布了首批模型 Qwen2-Math,而这一次,相比于 Qwen2-Math,Qwen2.5-Math 在更大规模的数学相关数据上进行了预训练,包括由 Qwen2-Math 生成的合成数据。Qwen2.5-Math-72B-Instruct 的整体性能超越了 Qwen2-Math-72B-Instruct 和 GPT4-o,甚至是非常小的专业模型如 Qwen2.5-Math-1.5B-Instruct 也能在与大型语言模型的竞争中取得高度竞争力的表现。
2025-05-08 17:41:41
727
原创 几乎是跪着看完AI教母李飞飞的开年巨作!AI Agent深度综述:概念、研究论文、理论背景及现代实现全解析!
此外,代理还能够在现实agnostic的宏观行为上进行改进,改善语言和多模态领域的交互维度和模式,并根据特定的目标变量和角色进行调整。这种模型不仅能够处理视觉和语言输入,还能够学习特定的代理任务,如机器人控制或API调用,提供了一种统一的训练多模态Agent AI的方法。这些模型可以是LLMs、VLMs或其他类型的AI模型,它们通过预训练获得了广泛的知识和技能,可以被微调以适应特定的任务或领域。这包括数据的收集、使用和目的,存储和安全性,数据的删除和保留,数据的可移植性和隐私政策,以及数据的匿名化处理。
2025-05-08 17:39:26
773
原创 2025年Deepseek+:外经贸企业创新突围讲义精华全版|附252页文件下载
本文主要介绍了如何将DeepSeek这款AI工具应用于外经贸行业的创新突围,涵盖了从基础应用到高级策略的方方面面。核心内容包括:利用DeepSeek 进行市场调研与数据决策: 强调使用DeepSeek进行市场调研,结合数据进行理性分析,并根据清晰的算法公式及实际案例,做出精准的选品决策。利用DeepSeek提升内容创作能力: 介绍了如何通过DeepSeek及其他 AI 工具,进行外贸文本生成、图片生成、视频制作、营销内容创作、优化等,以提高工作效率,并提供了大量使用方法和示例。
2025-05-08 17:30:41
622
原创 理解 RAG 第八部分:缓解 RAG 中的幻觉
在可能阻碍语言模型性能的各种问题和挑战中,幻觉往往位居榜首。当语言模型生成虚假、误导或无意义的信息时,就会出现幻觉。在检索增强生成 (RAG) 系统中,语言模型通过检索和整合外部信息来增强事实依据,这个问题得到了缓解,但并未完全消除。在我们理解 RAG 文章系列的新一期中,我们将探讨幻觉问题,与独立语言模型相比,它们在 RAG 系统中的表现如何,最重要的是,如何解决这个具有挑战性的问题。为什么 RAG 系统中的幻觉仍然会发生。
2025-05-08 17:29:21
519
原创 行业首发《智能分析Agent 白皮书》,揭秘DeepSeek+Data Agent的决策新范式
在大模型开启新一轮AI浪潮席卷全球之际,企业正面临着前所未有的挑战与机遇。在数字化转型进程中,企业始终面临结构化数据分析深度不足、非结构化知识利用率低的核心痛点。近年来,大模型技术的突破性发展,特别是以DeepSeek为代表的低成本高性能智能体的出现,为"普惠化智能应用"目标提供了技术实现路径。企业智能化正从"数据智能分析"向" 决策自动化"阶段跨越,开创数字时代经营范式的新纪元。在这样的背景下,数势科技推出了行业首个以“智能分析Agent”为侧重的白皮书《智能分析Agent如何驱动企业科学决策》。
2025-05-08 17:28:10
795
原创 程序员转行大模型指南:五大热门岗位,抓住IT行业最后的风口!非常详细收藏这一篇就够!
模型研发工程师的核心任务是设计和开发新的深度学习模型架构。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
2025-05-07 20:26:11
788
原创 大模型入门秘籍:四本书助你轻松掌握核心知识!【大模型入门书籍】
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。当前大模型学习的一大误区在于,过于强调工具和技术的掌握,而忽略了底层逻辑的思考。
2025-05-07 20:24:10
725
原创 大模型是什么?大模型发展历程、底层原理、如何学习大模型?非常详细,一篇文章全给你搞定!
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
2025-05-07 20:21:57
559
原创 厦门大学|1-3合集火了,共413页太全太牛了 ,《DeepSeek大模型及其企业应用》全面剖析企业AI转型路径,一定不能错过!
DeepSeek大模型及其企业应用》由厦门大学大数据教学团队林子雨副教授领衔编写,是一份面向企业人员的实用指南。该报告是系列报告的第三篇,系统梳理了大模型技术发展脉络,聚焦DeepSeek的核心能力与行业落地路径,结合丰富的应用案例与部署方案,为企业探索AI转型提供全方位参考。系列共四篇,我也会持续关注,及时更新。《第一篇:大模型概念、技术与应用实践》旨在以通俗易懂的方式系统解析大模型的核心概念、技术原理及行业应用,为读者提供从理论到实践的全方位指导。
2025-05-07 20:18:02
587
原创 基于大语言模型的知识蒸馏
离线蒸馏是指知识渊博的老师教给学生知识;在线蒸馏意味着教师和学生共同学习;自我蒸馏是指学生自学知识。这三种蒸馏方案可以相互结合。
2025-05-07 20:15:53
741
原创 如何通过MCP实现多智能体之间的协同
MCP 是一种开放协议,使系统能够以跨集成通用化的方式为 AI 模型提供上下文。该协议定义了 AI 模型如何调用外部工具、获取数据以及与服务交互。具体示例如下,展示了 Resend MCP 服务器如何与多个 MCP 客户端协同工作。这个理念并不新鲜;MCP从 LSP(语言服务器协议)中汲取了灵感。在 LSP 中,当用户在编辑器中输入时,客户端会查询语言服务器以获取自动补全建议或诊断信息。LSP。
2025-05-07 20:14:09
1112
原创 吴恩达教授的373页《LLM大模型通关课程手册》PDF分享,自学转行,零基础首选!
今天为大家带来由吴恩达教授与 OpenAI 共同推出的 LLM(Large Language Model)大模型通关课程手册,从理论到实践,带你全方位掌握大模型技术。从基础知识到高级应用一一为你剖析,不管你是小白还是研究生,这本书都能对你有所帮助,本手册特别结合了经典大模型开源框架LangChain,手把手教你如何基于LangChain开发出功能使用能力全面的应用。此外书中还提供了配套代码,让你在实践中加深理解,通过本手册,你将学会如何利用ChatGPT提供的API开发一个智能问答系统。
2025-05-07 20:11:49
546
原创 产品经理转型之路:普通产品经理跃升大模型产品经理,挑战与机遇并存,敢想敢做才能赢!
人工智能技术的发展趋势大模型在人工智能领域的地位与作用大模型产品经理的职业前景人工智能技术的发展趋势:近年来,人工智能技术取得了显著的成果,特别是在深度学习、自然语言处理等领域。大模型作为人工智能的核心技术之一,已经在诸多领域取得了广泛的应用。大模型在人工智能领域的地位与作用:大模型是一种基于深度学习技术的自然语言处理模型,具有强大的语言理解和生成能力。它可以帮助企业和开发者快速构建智能化产品和服务,提升用户体验。
2025-05-06 17:10:31
827
原创 零基础转行AI产品经理:2025年最佳职业选择,程序员与非程序员的福音!
尽管从零开始转行至AI产品经理看似充满挑战,但只要遵循上述步骤,坚持不懈地努力,就一定能够实现这一目标。更重要的是,随着AI技术的不断发展,这个职业将会变得越来越重要,为社会创造更多的价值。无论是想要追求个人成长还是寻找新的职业方向,AI产品经理都是一个值得考虑的选择。希望每位读者都能勇敢迈出第一步,在这条充满无限可能性的新道路上找到属于自己的位置。
2025-05-06 17:06:39
783
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人