博弈论详解 2(SG函数 和 SG定理)

传送门:博弈论详解 1(基本理论定义 和 Nim 游戏)

什么是 SG 函数

接着上次的讲解,我们来了解一个更通用的模型。我们把每一个状态变成一个点(在 Nim 游戏里就代表 a a a 数组),如果可以从一种状态转移到另一种状态,就在它们之间连一条有向边(在 Nim 里就是从 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an a 1 ′ , a 2 , . . . , a n ( a 1 ′ < a 1 ) a_1',a_2,...,a_n(a_1'<a_1) a1,a2,...,an(a1<a1))根据公平博弈游戏的性质(有限步),这张图应当是 DAG(有向无环图)。真的是吗?似乎不是,在一些游戏里,它可能是多个 DAG(当然,你把 Nim 游戏的每个 a i a_i ai 的变化看成独立的一张图也不是不可以,输的条件就是每个 DAG 都走到了最终局面 0 0 0)。不过为了方便,我们先考虑一个 DAG 的情况。

SG 函数的定义与计算

设有向边的集合是 E E E,那么 s g ( x ) = M E X ( s g ( x ′ ) ) ( { x , x ′ } ∈ E ) sg(x)=MEX(sg(x')) (\{x,x'\}\in E) sg(x)=MEX(sg(x))({x,x}E),所以 s g sg sg 函数需要用拓扑序逆序进行计算。

MEX(X) 是指不包含在整数集合 X 中的最小非负整数,如果 X 是空集,MEX(X)=0。

举个简单的例子,下图中每个点旁边的数字式是 s g sg sg 函数值。
在这里插入图片描述

SG 函数与必胜条件 C

最终局面,即出度为 0 0 0 的点(图中标蓝)的 s g sg sg 函数值是 0 0 0,推测必胜条件 C C C s g ( x ) ≠ 0 sg(x)\ne0 sg(x)=0

对于 C C C 需要满足的三个条件进行证明(博弈论详解 1 中加粗的那三条):
第一个条件:从一个 s g ( x ) ≠ 0 sg(x)\ne0 sg(x)=0 的点 x x x,必然能走到一个点 x ′ x' x,使 s g ( x ′ ) = 0 sg(x')=0 sg(x)=0,否则 s g ( x ) = 0 sg(x)=0 sg(x)=0。符合。
第二个条件:从一个 s g ( x ) = 0 sg(x)=0 sg(x)=0 的点 x x x,必然走不到一个点 x ′ x' x,使 s g ( x ′ ) = 0 sg(x')=0 sg(x)=0,否则 s g ( x ) > 0 sg(x)>0 sg(x)>0。符合。
第三个条件:最终局面出度为 0 0 0 x ′ x' x 的集合为空,其 s g sg sg 函数值为 0 0 0。符合。

结论:在一个 DAG 中,某个状态的必胜条件是 s g ( x ) ≠ 0 sg(x)\ne0 sg(x)=0

一个DAG到多个DAG——SG 定理

定理:对于一个由 n n n 个 DAG 组成的游戏,设第 i i i 张图当前状态是 s g 1 , s g 2 , . . . , s g n sg_1,sg_2,...,sg_n sg1,sg2,...,sgn(一开始就是每张图的初始状态),全局的状态就是这些 s g i sg_i sgi 的集合。定义 SG 和, s u m = s g 1 ⊕ s g 2 ⊕ . . . ⊕ s g n sum=sg_1\oplus sg_2\oplus...\oplus sg_n sum=sg1sg2...sgn,必胜条件 C C C s u m ≠ 0 sum\ne0 sum=0

这里第一个条件的验证方法和 Nim 游戏的验证方法很像,读者可以尝试自己推算,要注意 MEX 的性质。
第一个条件:假设 s u m ( s u m ≠ 0 ) sum(sum\ne0) sum(sum=0) 最高位的 1 1 1 表示 2 k 2^k 2k,则存在 s g i sg_i sgi 的第 k k k 位是 1 1 1。由于 s u m sum sum 在比 k k k 更高的位置上都是 0 0 0,所以 s g i sg_i sgi 在异或 s u m sum sum 之后第 k k k 位变成 0 0 0,而更高位上的数字不变,得到 s g i ⊕ s u m < s g i sg_i\oplus sum<sg_i sgisum<sgi。根据函数定义,从代表 s g i sg_i sgi 的点连出去的边指向的点中一定有一个点的 s g sg sg 函数值是 s g i ⊕ s u m sg_i\oplus sum sgisum(用了 MEX,只要小于 s g i sg_i sgi 的非负整数一定出现在了相邻的点上)。如果从 s g i sg_i sgi 的点移到 s g i ⊕ s u m sg_i\oplus sum sgisum 的点,那么 s u m 新 = s u m 原 ⊕ s g i ⊕ ( s g i ⊕ s u m 原 ) = 0 sum_{新}=sum_{原}\oplus sg_i\oplus(sg_i\oplus sum_{原})=0 sum=sumsgi(sgisum)=0。可以从满足 C C C 的状态走到不满足 C C C 的状态,符合。
第二个条件:如果此时 s u m = 0 sum=0 sum=0,要使其仍然是 0 0 0,必须找到一个 s g i sg_i sgi,他的边指向的点中有一个点的 s g sg sg 函数值与 s g i sg_i sgi 相等,此时 s u m sum sum 不变。而 MEX 的集合里面如果有一个数 x x x,结果一定不是 x x x。从不满足 C C C 的状态只能走到满足 C C C 的状态,符合。
第三个条件:当所有 s g i sg_i sgi 都是最终局面,无法进行任何操作的时候,所有的 s g i sg_i sgi 都是 0 0 0,此时 s u m = 0 sum=0 sum=0,符合。

结论:对于多个 DAG 的游戏,某个状态的必胜条件是 s u m = s g 1 ⊕ s g 2 ⊕ . . . ⊕ s g n ≠ 0 sum=sg_1\oplus sg_2\oplus...\oplus sg_n\ne0 sum=sg1sg2...sgn=0
基础应用练习题附做法:ABC 368 F

结语

我今天其实也是现学现卖的(做个总结),前几天的 ABC 和 CSP-S 2019 初赛真题 都考到了博弈论,我一脸懵 ε=ε=ε=(#>д<)ノ,所以学了一下。
希望读者能看懂本人的讲解,如果哪里有错,欢迎大佬指正!

  • 35
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值