最全TextCNN代码解读及实战,2024年最新面试看什么

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

self.convs = nn.ModuleList([

nn.Conv2d(in_channels=1, out_channels=num_filter,

kernel_size=(fs, embedding_dim))

for fs in filter_sizes

])

在forward函数中

将升维后的数据,放入卷积中,执行:

conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]

卷积的公式为:N=(W-F+2P)/S+1,经过计算第四维数据变成了1,所以就可以降维,降维后的到三个卷积结果,shape分别是:

torch.Size([batch, 2, 4]) torch.Size([batch, 2, 3]) torch.Size([batch, 2, 2])

  • MaxPolling:第三层是一个1-max pooling层,这样不同长度句子经过pooling层之后都能变成定长的表示。

对应forward:

pooled = [F.max_pool1d(conv,conv.shape[2]).squeeze(2) for conv in conved] # [batch,num_filter]

由于卷积核的大小是第三维,根据卷积公式可以计算出,经过池化,第三维的大小变成了1。然后再降维,就得到了三个定长的一维向量,向量分别是:

torch.Size([batch, 2]) torch.Size([batch, 2]) torch.Size([batch, 2])

然后,将三个向量拼接:

x_cat=torch.cat(pooled, dim=1)

就得到了一维向量,向量的大小为:torch.Size([batch, 6])

  • FullConnection and Softmax:最后接一层全连接的 softmax 层,输出每个类别的概率。

说明

通道(Channels):

  • 图像中可以利用 (R, G, B) 作为不同channel;

  • 文本的输入的channel通常是不同方式的embedding方式(比如 word2vec或Glove),实践中也有利用静态词向量和fine-tunning词向量作为不同channel的做法。

一维卷积(conv-1d):

  • 图像是二维数据;

  • 文本是一维数据,因此在TextCNN卷积用的是一维卷积(在word-level上是一维卷积;虽然文本经过词向量表达后是二维数据,但是在embedding-level上的二维卷积没有意义)。一维卷积带来的问题是需要通过设计不同 kernel_size 的 filter 获取不同宽度的视野

Pooling层:

利用CNN解决文本分类问题的文章还是很多的,比如这篇 A Convolutional Neural Network for Modelling Sentences 最有意思的输入是在 pooling 改成 (dynamic) k-max pooling ,pooling阶段保留 k 个最大的信息,保留了全局的序列信息。

Embedding方式:

  • 数据量较大:可以直接随机初始化embeddings,然后基于语料通过训练模型网络来对embeddings进行更新和学习。

  • 数据量较小:可以利用外部语料来预训练(pre-train)词向量,然后输入到Embedding层,用预训练的词向量矩阵初始化embeddings。(通过设置weights=[embedding_matrix])。

    • 静态(static)方式:训练过程中不再更新embeddings。实质上属于迁移学习,特别是在目标领域数据量比较小的情况下,采用静态的词向量效果也不错。(通过设置trainable=False)
  • 非静态(non-static)方式:在训练过程中对embeddings进行更新和微调(fine tune),能加速收敛。(通过设置trainable=True)

数据集

==============================================================

数据集采用cnews数据集,包含三个文件,分别是cnews.train.txt,cnews.val.txt,cnews,test.txt。类别:体育, 娱乐, 家居, 房产, 教育, 时尚, 时政, 游戏, 科技, 财经,共10个类别。

构建词向量

================================================================

  • 第一步,读取预料,做分词。

  • 思路:

  • 1、创建默认方式的分词对象seg。

  • 2、打开文件,按照行读取文章。

  • 3、去掉收尾的空格,将label和文章分割开。

  • 4、将分词后的文章放到src_data,label放入labels里。

  • 5、返回结果。

  • 我对代码做了注解,如下:

def read_corpus(file_path):

“”"读取语料

:param file_path:

:param type:

:return:

“”"

src_data = []

labels = []

seg = pkuseg.pkuseg() #使用默认分词方式。

with codecs.open(file_path,‘r’,encoding=‘utf-8’) as fout:

for line in tqdm(fout.readlines(),desc=‘reading corpus’):

if line is not None:

line.strip()的意思是去掉每句话句首句尾的空格

.split(‘\t’)的意思是根据’\t’把label和文章内容分开,label和内容是通过‘\t’隔开的。

\t表示空四个字符,也称缩进,相当于按一下Tab键

pair = line.strip().split(‘\t’)

if len(pair) != 2:

print(pair)

continue

src_data.append(seg.cut(pair[1]))# 对文章内容分词。

labels.append(pair[0])

return (src_data, labels) #返回文章内容的分词结果和labels

  • 经过这个步骤得到了labels和分词后的文章。如下代码:

src_sents, labels = read_corpus(‘cnews/cnews.train.txt’)

对labels做映射:

labels = {label: idx for idx, label in enumerate(labels)}

得到labels对应的idx的字典,idx的值是最后一次插入label的值。

第二步 构建词向量

这一步主要用到vocab.py的from_corpus方法

思路:

1、创建vocab_entry对象。

2、对分词后的文章统计词频,生成一个词和词频构成的字典。

3、从字典中取出Top size - 2个元素。

4、获取元素的词。

5、执行add方法将词放入vocab_entry,生成词和id,id就是词对应的向量值。

代码如下:

@staticmethod

def from_corpus(corpus, size, min_feq=3):

“”“从给定语料中创建VocabEntry”“”

vocab_entry = VocabEntry()

chain函数来自于itertools库,itertools库提供了非常有用的基于迭代对象的函数,而chain函数则是可以串联多个迭代对象来形成一个更大的迭代对象

*的作用:返回单个迭代器。

word_freq是个字典,key=词,value=词频

word_freq = Counter(chain(*corpus)) # Counter 是实现的 dict 的一个子类,可以用来方便地计数,统计词频

valid_words = word_freq.most_common(size - 2) # most_common()函数用来实现Top n 功能,在这里选出Top size-2个词

valid_words = [word for word, value in valid_words if value >= min_feq] # 把符合要求的词找出来放到list里面。

print(‘number of word types: {}, number of word types w/ frequency >= {}: {}’

.format(len(word_freq), min_feq, len(valid_words)))

for word in valid_words: # 将词放进VocabEntry里面。

vocab_entry.add(word)

return vocab_entry

创建完成后将词向量保存到json文件中

vocab = Vocab.build(src_sents, labels, 50000, 3)

print(‘generated vocabulary, source %d words’ % (len(vocab.vocab)))

vocab.save(‘./vocab.json’)

训练

=============================================================

训练使用Train_CNN.py,先看分析main方法的参数。

参数


parse = argparse.ArgumentParser()

parse.add_argument(“–train_data_dir”, default=‘./cnews/cnews.train.txt’, type=str, required=False)

parse.add_argument(“–dev_data_dir”, default=‘./cnews/cnews.val.txt’, type=str, required=False)

parse.add_argument(“–test_data_dir”, default=‘./cnews/cnews.test.txt’, type=str, required=False)

parse.add_argument(“–output_file”, default=‘deep_model.log’, type=str, required=False)

parse.add_argument(“–batch_size”, default=8, type=int)

parse.add_argument(“–do_train”, default=True, action=“store_true”, help=“Whether to run training.”)

parse.add_argument(“–do_test”, default=True, action=“store_true”, help=“Whether to run training.”)

parse.add_argument(“–learnning_rate”, default=5e-4, type=float)

parse.add_argument(“–num_epoch”, default=50, type=int)

parse.add_argument(“–max_vocab_size”, default=50000, type=int)

parse.add_argument(“–min_freq”, default=2, type=int)

parse.add_argument(“–embed_size”, default=300, type=int)

parse.add_argument(“–dropout_rate”, default=0.2, type=float)

parse.add_argument(“–warmup_steps”, default=0, type=int, help=“Linear warmup over warmup_steps.”)

parse.add_argument(“–GRAD_CLIP”, default=1, type=float)

parse.add_argument(“–vocab_path”, default=‘vocab.json’, type=str)

parse.add_argument(“–num_filter”, default=100, type=int, help=“CNN模型一个filter的输出channels”)

参数说明:

train_data_dir:训练集路径。

dev_data_dir:验证集路径

test_data_dir:测试集路径

output_file:输出的log路径

batch_size:batchsize的大小。

do_train:是否训练,默认True、

do_test:是否测试,默认True

learnning_rate:学习率

num_epoch:epoch的数量

max_vocab_size:词向量的个数

min_freq:词频,过滤低于这个数值的词

embed_size:Embedding的长度。

dropout_rate:dropout的值。

warmup_steps:设置预热的值。

vocab_path:词向量保存的路径

num_filter:卷积输出的数量。

构建词向量


vocab = build_vocab(args)

label_map = vocab.labels

print(label_map)

build_vocab的方法:

def build_vocab(args):

if not os.path.exists(args.vocab_path):

src_sents, labels = read_corpus(args.train_data_dir)

labels = {label: idx for idx, label in enumerate(labels)}

vocab = Vocab.build(src_sents, labels, args.max_vocab_size, args.min_freq)

vocab.save(args.vocab_path)

else:

vocab = Vocab.load(args.vocab_path)

return vocab

创建模型

创建CNN模型,将模型放到GPU上,调用train方法,训练。

cnn_model = CNN(len(vocab.vocab), args.embed_size, args.num_filter, [2, 3, 4], len(label_map),

dropout=args.dropout_rate)

cnn_model.to(device)

print(cnn_model.parameters)

train(args, cnn_model, train_data, dev_data, vocab, dtype=‘CNN’)

对train方法做了一些注解,如下:

def train(args, model, train_data, dev_data, vocab, dtype=‘CNN’):

LOG_FILE = args.output_file

#记录训练log

with open(LOG_FILE, “a”) as fout:

fout.write(‘\n’)

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值