最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
self.convs = nn.ModuleList([
nn.Conv2d(in_channels=1, out_channels=num_filter,
kernel_size=(fs, embedding_dim))
for fs in filter_sizes
])
在forward函数中
将升维后的数据,放入卷积中,执行:
conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
卷积的公式为:N=(W-F+2P)/S+1,经过计算第四维数据变成了1,所以就可以降维,降维后的到三个卷积结果,shape分别是:
torch.Size([batch, 2, 4]) torch.Size([batch, 2, 3]) torch.Size([batch, 2, 2])
- MaxPolling:第三层是一个1-max pooling层,这样不同长度句子经过pooling层之后都能变成定长的表示。
对应forward:
pooled = [F.max_pool1d(conv,conv.shape[2]).squeeze(2) for conv in conved] # [batch,num_filter]
由于卷积核的大小是第三维,根据卷积公式可以计算出,经过池化,第三维的大小变成了1。然后再降维,就得到了三个定长的一维向量,向量分别是:
torch.Size([batch, 2]) torch.Size([batch, 2]) torch.Size([batch, 2])
然后,将三个向量拼接:
x_cat=torch.cat(pooled, dim=1)
就得到了一维向量,向量的大小为:torch.Size([batch, 6])
- FullConnection and Softmax:最后接一层全连接的 softmax 层,输出每个类别的概率。
说明:
通道(Channels):
-
图像中可以利用 (R, G, B) 作为不同channel;
-
文本的输入的channel通常是不同方式的embedding方式(比如 word2vec或Glove),实践中也有利用静态词向量和fine-tunning词向量作为不同channel的做法。
一维卷积(conv-1d):
-
图像是二维数据;
-
文本是一维数据,因此在TextCNN卷积用的是一维卷积(在word-level上是一维卷积;虽然文本经过词向量表达后是二维数据,但是在embedding-level上的二维卷积没有意义)。一维卷积带来的问题是需要通过设计不同 kernel_size 的 filter 获取不同宽度的视野。
Pooling层:
利用CNN解决文本分类问题的文章还是很多的,比如这篇 A Convolutional Neural Network for Modelling Sentences 最有意思的输入是在 pooling 改成 (dynamic) k-max pooling ,pooling阶段保留 k 个最大的信息,保留了全局的序列信息。
Embedding方式:
-
数据量较大:可以直接随机初始化embeddings,然后基于语料通过训练模型网络来对embeddings进行更新和学习。
-
数据量较小:可以利用外部语料来预训练(pre-train)词向量,然后输入到Embedding层,用预训练的词向量矩阵初始化embeddings。(通过设置weights=[embedding_matrix])。
-
- 静态(static)方式:训练过程中不再更新embeddings。实质上属于迁移学习,特别是在目标领域数据量比较小的情况下,采用静态的词向量效果也不错。(通过设置trainable=False)
-
非静态(non-static)方式:在训练过程中对embeddings进行更新和微调(fine tune),能加速收敛。(通过设置trainable=True)
==============================================================
数据集采用cnews数据集,包含三个文件,分别是cnews.train.txt,cnews.val.txt,cnews,test.txt。类别:体育, 娱乐, 家居, 房产, 教育, 时尚, 时政, 游戏, 科技, 财经,共10个类别。
================================================================
-
第一步,读取预料,做分词。
-
思路:
-
1、创建默认方式的分词对象seg。
-
2、打开文件,按照行读取文章。
-
3、去掉收尾的空格,将label和文章分割开。
-
4、将分词后的文章放到src_data,label放入labels里。
-
5、返回结果。
-
我对代码做了注解,如下:
def read_corpus(file_path):
“”"读取语料
:param file_path:
:param type:
:return:
“”"
src_data = []
labels = []
seg = pkuseg.pkuseg() #使用默认分词方式。
with codecs.open(file_path,‘r’,encoding=‘utf-8’) as fout:
for line in tqdm(fout.readlines(),desc=‘reading corpus’):
if line is not None:
line.strip()的意思是去掉每句话句首句尾的空格
.split(‘\t’)的意思是根据’\t’把label和文章内容分开,label和内容是通过‘\t’隔开的。
\t表示空四个字符,也称缩进,相当于按一下Tab键
pair = line.strip().split(‘\t’)
if len(pair) != 2:
print(pair)
continue
src_data.append(seg.cut(pair[1]))# 对文章内容分词。
labels.append(pair[0])
return (src_data, labels) #返回文章内容的分词结果和labels
- 经过这个步骤得到了labels和分词后的文章。如下代码:
src_sents, labels = read_corpus(‘cnews/cnews.train.txt’)
对labels做映射:
labels = {label: idx for idx, label in enumerate(labels)}
得到labels对应的idx的字典,idx的值是最后一次插入label的值。
第二步 构建词向量
这一步主要用到vocab.py的from_corpus方法
思路:
1、创建vocab_entry对象。
2、对分词后的文章统计词频,生成一个词和词频构成的字典。
3、从字典中取出Top size - 2个元素。
4、获取元素的词。
5、执行add方法将词放入vocab_entry,生成词和id,id就是词对应的向量值。
代码如下:
@staticmethod
def from_corpus(corpus, size, min_feq=3):
“”“从给定语料中创建VocabEntry”“”
vocab_entry = VocabEntry()
chain函数来自于itertools库,itertools库提供了非常有用的基于迭代对象的函数,而chain函数则是可以串联多个迭代对象来形成一个更大的迭代对象
*的作用:返回单个迭代器。
word_freq是个字典,key=词,value=词频
word_freq = Counter(chain(*corpus)) # Counter 是实现的 dict 的一个子类,可以用来方便地计数,统计词频
valid_words = word_freq.most_common(size - 2) # most_common()函数用来实现Top n 功能,在这里选出Top size-2个词
valid_words = [word for word, value in valid_words if value >= min_feq] # 把符合要求的词找出来放到list里面。
print(‘number of word types: {}, number of word types w/ frequency >= {}: {}’
.format(len(word_freq), min_feq, len(valid_words)))
for word in valid_words: # 将词放进VocabEntry里面。
vocab_entry.add(word)
return vocab_entry
创建完成后将词向量保存到json文件中
vocab = Vocab.build(src_sents, labels, 50000, 3)
print(‘generated vocabulary, source %d words’ % (len(vocab.vocab)))
vocab.save(‘./vocab.json’)
=============================================================
训练使用Train_CNN.py,先看分析main方法的参数。
parse = argparse.ArgumentParser()
parse.add_argument(“–train_data_dir”, default=‘./cnews/cnews.train.txt’, type=str, required=False)
parse.add_argument(“–dev_data_dir”, default=‘./cnews/cnews.val.txt’, type=str, required=False)
parse.add_argument(“–test_data_dir”, default=‘./cnews/cnews.test.txt’, type=str, required=False)
parse.add_argument(“–output_file”, default=‘deep_model.log’, type=str, required=False)
parse.add_argument(“–batch_size”, default=8, type=int)
parse.add_argument(“–do_train”, default=True, action=“store_true”, help=“Whether to run training.”)
parse.add_argument(“–do_test”, default=True, action=“store_true”, help=“Whether to run training.”)
parse.add_argument(“–learnning_rate”, default=5e-4, type=float)
parse.add_argument(“–num_epoch”, default=50, type=int)
parse.add_argument(“–max_vocab_size”, default=50000, type=int)
parse.add_argument(“–min_freq”, default=2, type=int)
parse.add_argument(“–embed_size”, default=300, type=int)
parse.add_argument(“–dropout_rate”, default=0.2, type=float)
parse.add_argument(“–warmup_steps”, default=0, type=int, help=“Linear warmup over warmup_steps.”)
parse.add_argument(“–GRAD_CLIP”, default=1, type=float)
parse.add_argument(“–vocab_path”, default=‘vocab.json’, type=str)
parse.add_argument(“–num_filter”, default=100, type=int, help=“CNN模型一个filter的输出channels”)
参数说明:
train_data_dir:训练集路径。
dev_data_dir:验证集路径
test_data_dir:测试集路径
output_file:输出的log路径
batch_size:batchsize的大小。
do_train:是否训练,默认True、
do_test:是否测试,默认True
learnning_rate:学习率
num_epoch:epoch的数量
max_vocab_size:词向量的个数
min_freq:词频,过滤低于这个数值的词
embed_size:Embedding的长度。
dropout_rate:dropout的值。
warmup_steps:设置预热的值。
vocab_path:词向量保存的路径
num_filter:卷积输出的数量。
vocab = build_vocab(args)
label_map = vocab.labels
print(label_map)
build_vocab的方法:
def build_vocab(args):
if not os.path.exists(args.vocab_path):
src_sents, labels = read_corpus(args.train_data_dir)
labels = {label: idx for idx, label in enumerate(labels)}
vocab = Vocab.build(src_sents, labels, args.max_vocab_size, args.min_freq)
vocab.save(args.vocab_path)
else:
vocab = Vocab.load(args.vocab_path)
return vocab
创建模型
创建CNN模型,将模型放到GPU上,调用train方法,训练。
cnn_model = CNN(len(vocab.vocab), args.embed_size, args.num_filter, [2, 3, 4], len(label_map),
dropout=args.dropout_rate)
cnn_model.to(device)
print(cnn_model.parameters)
train(args, cnn_model, train_data, dev_data, vocab, dtype=‘CNN’)
对train方法做了一些注解,如下:
def train(args, model, train_data, dev_data, vocab, dtype=‘CNN’):
LOG_FILE = args.output_file
#记录训练log
with open(LOG_FILE, “a”) as fout:
fout.write(‘\n’)
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!