导读:世界杯激战正酣,大家在欣赏精彩比赛的同时,怎能少了美食的陪伴,我们今天就来聊聊世界杯的好丽友——小龙虾。
01 获得数据
本次数据我们爬取了大众点评中所有打上小龙虾标签的餐厅:
从上图中可以看出,我们可以获得餐厅的人均消费、点评数量、推荐菜、评分(口味、环境、服务)等信息,用于我们之后的分析。我们此次总共爬取到了225个城市,6758个餐厅,121.3万条评论。
我们截取其中的部分核心代码:
- def find_city_page(path):
- data = pd.read_excel(path)
- city_lobster_page = pd.DataFrame()
- driver = webdriver.Chrome()
- for i in range(0,len(data)):
- try :
- js=‘window.open("’+data[‘city_lobster_url’][i]+‘")’
- driver.execute_script(js)
- bsObj = BeautifulSoup(driver.page_source,‘html.parser’)
- bs = bsObj.find_all(‘a’,attrs={‘class’:‘PageLink’})
- this_city_lobster={‘city_name’:data[‘city_name’][i],
- ‘page_num’:max([int(l.text ) for l in bs])}
- city_lobster_page = city_lobster_page.append(this_city_lobster,ignore_index=True)
- except:
- continue
- return
- city_lobster_page
02 城市对比
我们首先要进行分析的是各个城市的小龙虾热度,我们以带有“小龙虾”标签的餐厅评论总和作为最终的对比依据,得到的TOP20城市如下:
可以看出上海市的点评数遥遥领先,可能存在以下两个因素:a.上海市的小龙虾餐厅数量较多,本身存在较大的消费群体 b.大众点评总部在上海,上海的商户入驻数量较多。有兴趣的朋友可以进行更深一步的研究。
圈定了TOP20城市后,我们首先看一下TOP20城市小龙虾的人均消费:
该项统计中,包邮区占据了靠前的位置,体现出来包邮区对小龙虾的热情和自身的消费水平。同时可以看到株洲的人均消费接近于上海的一半,有机会到湖南旅游的朋友可以考虑到株洲品尝物美价廉的小龙虾。
紧接着要看的是TOP20城市味道、环境、服务三部分的分数情况:
我们发现服务分与环境分排序相同,二者具有极强的相关性,符合通常认知。同时可以看到在三项分数中,北方的四个城市天津、西安、北京、青岛各项指标均处于靠前的位置,其中天津的服务和环境均处于首位。
结合下图全国小龙虾热力图,似乎有些有悖于大家的认知。
由此我们可以得出在小龙虾整体热度比较强的区域,人们对于小龙虾各方面的要求会相应提高,相反在整体热度偏低区域,人们评价时会相对宽容。同时我们看到海口的各项指标均处于最后一位,需要进行相应的调整。
03 探索龙虾
我们看过了各个城市的情况后,进一步看一下小龙虾本身的一些有趣的内容,首先看一下龙虾的口味,我们选取了各个餐厅中带有龙虾的推荐菜,分词后获得TOP20的口味:
十三香、蒜蓉、麻辣高居前三位,根据作者的经验,这基本上是符合大家整体口味的选择。TOP20中的蛋黄,白灼对于作者而言相对陌生,有品尝过的朋友可以分享一些这些口味的体验。
看完了口味,再看一下龙虾的好丽友:
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
tps://bbs.csdn.net/topics/618317507)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!