一.下载Mobaxterm:
1.连接须知
远程连接前需连接研究院WiFi NUSRI-STU或工位网线,服务器ip:192.168.45.201, port:22
2.具体方法
1.下载应用MobaXterm(putty等都可以,个人感觉moba更好用),选择免费版即可
MobaXterm Xserver with SSH, telnet, RDP, VNC and X11 - Download
具体安装过程无脑点就好了,安装路径别放c盘就行
2.进入后点击左上角的session
3.点击左上角的SSH,输入IP地址192.168.45.201和端口22,点击ok
4.输入用户名和密码即可
ps:linux输密码时候不会显示内容,输完回车即可
5.Mac SSH到服务器的方法:
连接研究院WiFi,打开mac终端输入以下代码,其中username为自己的用户名
ssh username@192.168.45.201 -p 22
二.配置conda环境
1.初始化
服务器的显卡驱动和miniconda已经装好,conda需要各位手动创建个人的环境。
如果登录后user前面没有(base),先输入 conda init 完成此步后需关闭终端重新连接。
再次打开发现前面有了(base)
2.创建自己的conda环境
your_env_name是环境名,按照命名规则随意修改
python=3.12可以改成其他需要的版本号
sudo env "PATH=$PATH" conda create -n your_env_name python=3.12
输入密码然后回车
输入y然后回车
安装成功
输入以下代码查看是否成功配置好conda环境
conda info -e
输入以下代码使用新配置好的环境
conda activate env_test
3.安装pytorch
更新系统软件包(其实这一步并不需要,但是习惯下载东西前都更新一下)
sudo apt update
sudo apt upgrade
输入以下代码查看服务器的显卡可以适配的cuda版本
nvidia-smi
打开pytorch官网
按照图中的选项进行选择,并复制最后的命令
等待下载完成(这一步下载时间会比较长)
验证是否安装成功
python
import torch
print(torch.__version__)
三.安装pycharm专业版
想要pycharm远程连接服务器进行开发,必须要用专业版。这个操作不难,可以网上自己找找各种教程,或者等有空本账号下一篇文章会专门出一期教学。主要利用下面这个网站。
JETBRA.IN CHECKER | IPFS
四.pycharm连接服务器
1.远程登录到服务器
2.输入以下代码(将user1改为自己的用户名),这一步是在自己的账户目录下新建文件夹code,用于后续上传代码到服务器。
cd /home/user1
mkdir code
ls
3.设置pycharm SFTP连接
工具->部署->配置
打开左上角“+”,点击SFTP
随便输入个名字
创建好后点击红色方框内的三个点
在新弹出的窗口中点左上角的加号,按下图输入主机、端口、自己的用户名、密码,勾选保存密码
点击测试连接查看能否连接成功,成功后点最下面的应用,然后点击确定关闭这个窗口
之后点击映射,将本地路径改为你本地的项目目录,部署路径改为/home/username/code,其中username为自己的用户名,改完后点击确定关闭窗口
在左上角文件 --> 设置 打开python解释器,点击添加解释器中的SSH...
选择“现有”,指定ssh服务器为之前添加的,如果出现下面这行字“ssh目标保存在....”的话点击右侧三个点
将仅对此项目可见去掉即可,点击确定
然后点击下一步
再点下一步
选择系统解释器,点击右侧三个点
找到图中的文件,点击确定。其中env_test是之前创建的conda虚拟环境名字,python3.9是之前创建的虚拟环境python版本号,这两个会根据个人创建的不同而改变,请自行调整
如果不知道自己的可执行文件路径在哪,可以在服务器中输入conda info -e,查看自己的虚拟环境路径
点击同步文件夹
设置同步文件夹中的本地路径为本地项目目录,远程路径为之前在服务器中创建的code文件夹路径/home/username/code,username改为自己的用户名,单击确定
这样就可以将本地的代码同步到服务器中
设置好应该如下图,点击创建
然后解释器就设置完成了,点击应用后点击确定
选择项目同步方式, 按下图勾选自动上传可实现自动同步
在服务器中我们可以看到代码已经成功同步到服务器中
测试能否运行代码
确认右下角选择的是服务器的解释器
跑一段测试代码
import numpy
if __name__ == '__main__':
a = numpy.array([1, 2, 3])
print(a)
如下图即为运行成功
补充说明
在conda虚拟环境中安装其他库时,首先使用
conda install xxx
如果安装失败则使用
pip install xxx
本篇教程到此结束,感谢您的观看。