NUSRI工位电脑连接课题组服务器教程

一.下载Mobaxterm:

1.连接须知

远程连接前需连接研究院WiFi NUSRI-STU或工位网线,服务器ip:192.168.45.201, port:22

2.具体方法

1.下载应用MobaXterm(putty等都可以,个人感觉moba更好用),选择免费版即可

MobaXterm Xserver with SSH, telnet, RDP, VNC and X11 - Download

具体安装过程无脑点就好了,安装路径别放c盘就行

2.进入后点击左上角的session

3.点击左上角的SSH,输入IP地址192.168.45.201和端口22,点击ok

4.输入用户名和密码即可

ps:linux输密码时候不会显示内容,输完回车即可

5.Mac SSH到服务器的方法:

连接研究院WiFi,打开mac终端输入以下代码,其中username为自己的用户名

ssh username@192.168.45.201 -p 22

 二.配置conda环境

1.初始化

服务器的显卡驱动和miniconda已经装好,conda需要各位手动创建个人的环境。

如果登录后user前面没有(base),先输入 conda init 完成此步后需关闭终端重新连接。

再次打开发现前面有了(base)

2.创建自己的conda环境

your_env_name是环境名,按照命名规则随意修改

python=3.12可以改成其他需要的版本号

sudo env "PATH=$PATH" conda create -n your_env_name python=3.12

输入密码然后回车

输入y然后回车

安装成功 

输入以下代码查看是否成功配置好conda环境

conda info -e

输入以下代码使用新配置好的环境

conda activate env_test

3.安装pytorch

更新系统软件包(其实这一步并不需要,但是习惯下载东西前都更新一下)

sudo apt update
sudo apt upgrade

输入以下代码查看服务器的显卡可以适配的cuda版本

nvidia-smi

打开pytorch官网

Get Started

按照图中的选项进行选择,并复制最后的命令

等待下载完成(这一步下载时间会比较长)

验证是否安装成功

python
import torch
print(torch.__version__)

三.安装pycharm专业版

想要pycharm远程连接服务器进行开发,必须要用专业版。这个操作不难,可以网上自己找找各种教程,或者等有空本账号下一篇文章会专门出一期教学。主要利用下面这个网站。
JETBRA.IN CHECKER | IPFS

四.pycharm连接服务器

1.远程登录到服务器

2.输入以下代码(将user1改为自己的用户名),这一步是在自己的账户目录下新建文件夹code,用于后续上传代码到服务器。

cd /home/user1
mkdir code
ls

3.设置pycharm SFTP连接

工具->部署->配置

打开左上角“+”,点击SFTP

随便输入个名字

创建好后点击红色方框内的三个点

在新弹出的窗口中点左上角的加号,按下图输入主机、端口、自己的用户名、密码,勾选保存密码

点击测试连接查看能否连接成功,成功后点最下面的应用,然后点击确定关闭这个窗口

之后点击映射,将本地路径改为你本地的项目目录,部署路径改为/home/username/code,其中username为自己的用户名,改完后点击确定关闭窗口

在左上角文件 --> 设置 打开python解释器,点击添加解释器中的SSH...

选择“现有”,指定ssh服务器为之前添加的,如果出现下面这行字“ssh目标保存在....”的话点击右侧三个点

将仅对此项目可见去掉即可,点击确定

然后点击下一步

再点下一步

选择系统解释器,点击右侧三个点

找到图中的文件,点击确定。其中env_test是之前创建的conda虚拟环境名字,python3.9是之前创建的虚拟环境python版本号,这两个会根据个人创建的不同而改变,请自行调整

如果不知道自己的可执行文件路径在哪,可以在服务器中输入conda info -e,查看自己的虚拟环境路径

点击同步文件夹

设置同步文件夹中的本地路径为本地项目目录,远程路径为之前在服务器中创建的code文件夹路径/home/username/code,username改为自己的用户名,单击确定

这样就可以将本地的代码同步到服务器中

设置好应该如下图,点击创建

然后解释器就设置完成了,点击应用后点击确定

选择项目同步方式, 按下图勾选自动上传可实现自动同步

在服务器中我们可以看到代码已经成功同步到服务器中

测试能否运行代码

确认右下角选择的是服务器的解释器

跑一段测试代码

import numpy
 
if __name__ == '__main__':
    a = numpy.array([1, 2, 3])
    print(a)

如下图即为运行成功

补充说明

在conda虚拟环境中安装其他库时,首先使用

conda install xxx

如果安装失败则使用

pip install xxx

本篇教程到此结束,感谢您的观看。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值