【2024】python面试题大全【爬虫阶段】_爬虫scrapy面试题

119、简述 requests模块的作用及基本使用?
  • 使用requests可以模拟浏览器发送的请求
  • 发送get请求:requests.get()
  • 发送post请求:requests.post()
  • 读取请求返回内容:requests.text()
  • 保存cookie:requests.cookie()
120、简述 beautifulsoup模块的作用及基本使用?

查找xml/html文本中查找指定信息的三方库
* 获取title信息 soup.title
* 获取title的属性 soup.title.attrs
https://blog.csdn.net/qq_37275405/article/details/80953517

121、简述 seleninu模块的作用及基本使用?

selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题

selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转、输入、点击、下拉等,来拿到网页渲染之后的结果,可支持多种浏览器

122、scrapy框架中各组件的工作流程?
  • Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。
  • Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。
  • Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,
  • Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器),
  • Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.
  • Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。
  • Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)
123、在scrapy框架中如何设置代理(两种方法)?

from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware
from urllib.request import getproxies

124、scrapy框架中如何实现大文件的下载?
  • FilesPipeline
  • ImagesPipeline
125、scrapy中如何实现限速?

修改setting文件的AUTOTHROTTLE_START_DELAY 打开后默认限速为5秒

126、scrapy中如何实现暂定爬虫?

在cmd上cd 进入项目
然后在项目目录下创建 记录文件:remain/001
然后输入:scrapy crawl zhihu -s JOBDIR=remain/001
回车运行就行了
按ctrl+c 暂停
继续运行只要再次输入:scrapy crawl zhihu -s JOBDIR=remain/001就行了
需要重新爬取就换个文件 002就行了

127、scrapy中如何进行自定制命令?

在spiders同级创建任意目录,如:commands
在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)

      from scrapy.commands import ScrapyCommand
      from scrapy.utils.project import get_project_settings


      class Command(ScrapyCommand):

          requires_project = True

          def syntax(self):
              return '[options]'

          def short\_desc(self):
              return 'Runs all of the spiders'

          def run(self, args, opts):
              spider_list = self.crawler_process.spiders.list()
              for name in spider_list:
                  self.crawler_process.crawl(name, **opts.__dict__)
              self.crawler_process.start()

在settings.py 中添加配置 COMMANDS_MODULE = ‘项目名称.目录名称’
在项目目录执行命令:scrapy crawlall

128、scrapy中如何实现的记录爬虫的深度?

class scrapy.contrib.spidermiddleware.depth.DepthMiddleware
DepthMiddleware是一个用于追踪每个Request在被爬取的网站的深度的中间件。 其可以用来限制爬取深度的最大深度或类似的事情。

DepthMiddleware 可以通过下列设置进行配置(更多内容请参考设置文档):

DEPTH_LIMIT - 爬取所允许的最大深度,如果为0,则没有限制。
DEPTH_STATS - 是否收集爬取状态。
DEPTH_PRIORITY - 是否根据其深度对requet安排优先级

129、scrapy中的pipelines工作原理?

Scrapy 提供了 pipeline 模块来执行保存数据的操作。在创建的 Scrapy 项目中自动创建了一个 pipeline.py 文件,同时创建了一个默认的 Pipeline 类。我们可以根据需要自定义 Pipeline 类,然后在 settings.py 文件中进行配置即可

130、scrapy的pipelines如何丢弃一个item对象?

到pipelines的时候不执行持久化保存就会什么也不执行也就是丢弃

131、简述scrapy中爬虫中间件和下载中间件的作用?

下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。

132、scrapy-redis组件的作用?

scheduler - 调度器
dupefilter - URL去重规则(被调度器使用)
pipeline - 数据持久化

133、scrapy-redis组件中如何实现的任务的去重?

定义去重规则(被调度器调用并应用)

  a. 内部会使用以下配置进行连接Redis

      # REDIS_HOST = 'localhost'                            # 主机名
      # REDIS_PORT = 6379                                   # 端口
      # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)
      # REDIS_PARAMS  = {}                                  # Redis连接参数             默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
      # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
      # REDIS_ENCODING = "utf-8"                            # redis编码类型             默认:'utf-8'

  b. 去重规则通过redis的集合完成,集合的Key为:

      key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
      默认配置:
          DUPEFILTER_KEY = 'dupefilter:%(timestamp)s'

  c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在

      from scrapy.utils import request
      from scrapy.http import Request

      req = Request(url='http://www.cnblogs.com/wupeiqi.html')
      result = request.request_fingerprint(req)
      print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c


      PS:
          - URL参数位置不同时,计算结果一致;
          - 默认请求头不在计算范围,include_headers可以设置指定请求头
          示例:
              from scrapy.utils import request
              from scrapy.http import Request

              req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'})
              result = request.request_fingerprint(req,include_headers=['cookies',])

              print(result)

              req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666})

              result = request.request_fingerprint(req,include_headers=['cookies',])

              print(result)

!#Ensure all spiders share same duplicates filter through redis.

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

### Python Scrapy 爬虫技术面试题及答案 #### 什么是 ScrapyScrapy 是一个用于抓取网站并提取结构化数据的开源和协作框架。它广泛应用于数据挖掘、监测和自动化测试等领域[^2]。 #### 如何启动所有的 Spider? 为了实现这一功能,可以在 `spiders` 同级创建任意目录(如:`commands`),并在该目录下创建名为 `crawlall.py` 的文件。此文件的内容如下所示: ```python from scrapy.commands import ScrapyCommand from scrapy.utils.project import get_project_settings class Command(ScrapyCommand): requires_project = True def syntax(self): return '[options]' def short_desc(self): return 'Runs all of the spiders' def run(self, args, opts): spider_list = self.crawler_process.spiders.list() for name in spider_list: self.crawler_process.crawl(name, **opts.__dict__) self.crawler_process.start() ``` 这段代码定义了一个新的命令来运行所有蜘蛛程序。 #### Selenium 和爬虫之间有何联系? Selenium 主要用于模拟浏览器行为,能够处理 JavaScript 渲染后的页面内容。对于一些依赖大量JavaScript加载动态内容的网页来说,传统的基于 HTTP 请求的方式难以获取完整的 HTML 结构,而 Selenium 可以很好地解决这个问题。因此,在某些情况下,Selenium 成为了构建高效稳定网络爬虫不可或缺的一部分[^1]。 #### 解析器的作用是什么? 解析器负责将下载下来的HTML文档转换成易于操作的数据形式,比如字典列表等。通过编写特定规则,可以从杂乱无章的信息源里精准定位所需的目标字段,并将其整理为结构化的记录以便后续分析使用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值