
大数据最全面试题-Offer直通车
文章平均质量分 90
17年+码农经历了很多次面试,多次作为面试官面试别人,多次大数据面试和面试别人,深知哪些面试题是会被经常问到,熟背八股文和总结好自己项目经验,将让你在面试更容易拿到Offer。长期更新大数据面试题,分享面试技巧和推荐大数据的就业机会,不定时在线答疑。还有多年的实践经验技巧、代码待更新,早订阅早受益。
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
大模型大数据攻城狮
在阿里巴巴等多种类型公司工作过,第一份工作是在大厂做移动开发,后来在创业公司由于团队需要做后台开发、嵌入式开发等几乎全栈开发,最近这些年还保持必要全栈开发,精力更多在大数据、大模型等领域。
展开
-
从上千份大厂面经呕心沥血整理:大厂高频手撕面试题(数据结构和算法篇 ,Java实现亲试可跑)
判断两个链表是否相交可以采用多种方法。一种方法是使用双指针。首先分别遍历两个链表,得到两个链表的长度。然后让长链表的指针先走两个链表长度差的步数。之后,同时移动两个链表的指针,每次比较两个指针是否指向相同的节点。如果指向相同节点,那么这两个链表相交;如果直到指针都走到链表末尾还没有相同节点,那么这两个链表不相交。例如,有链表 A 长度为 m,链表 B 长度为 n(假设 m > n)。先让链表 A 的指针先走 m - n 步,然后同时移动 A 和 B 的指针。原创 2024-12-17 00:09:26 · 1114 阅读 · 0 评论 -
大厂面试手撕SQL面试题(Hive实现:样例数据、详细思路、亲试可行的运行截图)
查询每个用户最大连续登录天数的问题与上一个问题类似,关键在于如何计算并判断用户连续登录的天数。最大连续登录天数可以通过类似的方式实现,但查询的重点是要返回每个用户的最长连续登录天数。event_date是事件的发生时间,continue_time是持续秒数,有的事件发生了,还没结束又发生别的事件,要求计算时间时去除重叠的时间。:首先,我们同样需要计算每个用户的登录日期,并标记每个登录记录是否是连续的。:通过计算连续的登录天数,标记出每个用户的连续登录天数。的表,包含用户的登录记录。原创 2024-12-07 22:23:12 · 1505 阅读 · 0 评论 -
面试前必刷:大厂高频大数据八股文精选100道及参考答案(几百家面试题挑选最高频精华,多张示意图)
反射的概念Java 反射是指在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性。这种动态获取信息以及动态调用对象方法的功能称为 Java 语言的反射机制。反射的主要组成部分Class 类:是 Java 反射机制的核心类,每个类在运行时都会有一个对应的Class对象。Class类提供了获取类的各种信息的方法,如获取类的名称、获取类的构造方法、获取类的成员变量和获取类的方法等。可以通过以下三种方式获取Class对象:通过类的class。原创 2024-11-23 18:52:10 · 941 阅读 · 0 评论 -
大数据平台符合信创(CDH国产化代替)详细方案(企业内部不外传方案)
信创旨在实现信息技术产业的自主可控,减少对外部技术的依赖,从而提升国家信息安全和经济发展的自主性。在此背景下,中国对信创提出了更高的要求,以期在激烈的市场竞争中占据有利地位。信创不仅关乎技术层面的创新,更涉及到产业链条的整合与优化。它要求从基础硬件、操作系统、数据库、中间件等各个层面实现国产替代,构建完整的信息技术生态体系。尤其是在做国企项目时,就有硬性要求使用符合信创(国产代替)。在信创背景下,符合要求的产品必须具备自主可控、安全可靠以及性能卓越等核心特点。原创 2024-09-25 08:53:37 · 2085 阅读 · 0 评论 -
《大数据最全面试题-Offer直通车》目录
做好这些不用担心试用期不通过:程序员入职新公司如何快速上手项目本人遇到大数据面试题和参考答案(超过1万字精华版)大数据面试英文自我介绍参考(万字长文)大数据运维应用场景面试题汇总及参考答案(持续更新)万字数据仓库面试题及参考答案数据仓库数据质量监控和处理方法最佳实践数据仓库建模方法万字详解Doris的3种数据模型详解和数据仓库每一层的模型选用大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题最全Hive面试题2024年(2万字详解)Elasticsearch 面试题及参考答原创 2024-05-01 16:40:31 · 1049 阅读 · 0 评论 -
Matplotlib 绘图从入门到精通:8000字喂饭级教程
通过修改全局参数(原创 2025-03-15 17:14:01 · 241 阅读 · 0 评论 -
深度剖析 Doris 数据倾斜,优化方案一网打尽
简单来说,数据倾斜指的是数据在分区或分桶时分布不均匀的现象。想象一下,你把一堆苹果分给几个篮子,结果有的篮子装得满满当当,有的却几乎是空的 —— 这就是数据倾斜在 Doris 中的写照。在分布式系统中,这种不均匀分布会直接影响到数据的存储、查询和计算效率。分区层面:数据按时间、地域等维度切分时,某些分区可能承载了绝大部分数据。分桶层面:数据按哈希值分配到不同桶中时,某些桶可能因为键值分布不均而 “超载”。原创 2025-03-14 00:02:08 · 937 阅读 · 0 评论 -
ClickHouse 数据倾斜实战:案例分析与优化技巧
在 ClickHouse 的分布式架构中,数据通过分片和副本实现水平扩展和高可用。分片负责将数据切分到不同节点,副本则为数据提供冗余备份。然而,当数据在分片间分布不均时,倾斜就发生了。想象一下,你把一堆苹果分给几个朋友,结果某个朋友拿了一大半,而其他人只分到几个——这就是数据倾斜的直观写照。那么,数据倾斜到底是怎么冒出来的呢?1. 分片键选得不好,埋下隐患ClickHouse 依赖分片键(Sharding Key)来决定数据落在哪个分片上。如果这个键选得不靠谱,麻烦就来了。原创 2025-03-11 00:06:49 · 951 阅读 · 0 评论 -
Python Numpy面试题及参考答案
在 Numpy 中生成这样的自定义序列,可以通过多种方法来实现。一种常见的思路是利用 Numpy 的广播和重复操作。首先,我们可以使用。原创 2025-03-11 07:18:26 · 502 阅读 · 0 评论 -
Python开发Scikit-learn面试题及参考答案
在处理数据时,缺失值是常见问题,会对模型性能产生不良影响。 是 模块中的一个强大工具,可高效处理缺失值。 提供了多种策略来填充缺失值,如 (均值)、(中位数)、(众数)和 (常量)。均值策略适用于数据分布较为均匀的情况,能保留数据的整体趋势;中位数策略对异常值不敏感,适合存在离群点的数据;众数策略常用于类别型数据;常量策略则允许用户指定一个固定值来填充缺失值。以下是使用 的具体步骤和代码示例:在上述代码中,首先导入 类和 库。然后创建一个包含缺失值的示例数据集。接着,实例化 对象,并将填充策原创 2025-03-07 00:06:41 · 351 阅读 · 0 评论 -
阿里云 DataWorks面试题集锦及参考答案
在阿里云 DataWorks 中,工作空间、项目和业务流程存在着清晰的三层逻辑关系,共同构成了一个完整的数据管理和开发体系。DataWorks 中的冒烟测试是在进行全面测试之前,对数据任务或数据流程进行的初步、快速的检查,作用显著。首先,它能快速发现数据任务或流程中的严重问题,比如代码语法错误、配置错误等,避免在后续深入测试中才发现这些基础问题而浪费大量时间和资源。其次,冒烟测试可以验证数据处理流程的基本功能是否正常,确保关键环节能够顺利运行,为后续更详细的测试提供稳定的基础。再者,它有助于提高测试效率,原创 2025-03-07 00:07:31 · 1137 阅读 · 0 评论 -
阿里云MaxCompute面试题汇总及参考答案
Tunnel 命令是 MaxCompute 提供的一个命令行工具,用于在本地与 MaxCompute 服务之间进行数据的导入和导出操作。数据快速上传:能够将本地存储的数据文件快速上传到 MaxCompute 的表中。例如,企业可以将日常业务产生的日志文件、销售数据文件等,通过 Tunnel 命令按照指定的表结构导入到 MaxCompute 中,进行后续的数据分析和处理。支持多种数据格式:可以处理多种常见的数据格式,如 CSV、JSON、Parquet 等。原创 2025-03-06 07:21:53 · 558 阅读 · 0 评论 -
Python数据分析面试题及参考答案
在数据处理和分析中,分箱操作是将连续型数据转换为离散型数据的常用方法,pandas中的cut和qcut函数可实现这一功能。cut函数主要基于值的范围进行分箱。它允许我们指定分箱的边界,将数据划分为不同的区间。例如,我们有一组学生的考试成绩数据,想要将成绩划分为 “不及格”(0 - 59)、“及格”(60 - 79)、“良好”(80 - 89)和 “优秀”(90 - 100)四个等级。labels = ['不及格', '及格', '良好', '优秀']这里,bins参数指定了分箱的边界,labels。原创 2025-03-05 00:02:09 · 594 阅读 · 0 评论 -
途牛大数据面试题及参考答案
自定义 Hive UDF(用户定义函数)通常需要以下几个步骤。首先,创建一个 Java 类,让它继承自。原创 2025-03-03 07:18:44 · 523 阅读 · 0 评论 -
Python Scrapy爬虫面试题及参考答案
定义一个Item类来存储提取的数据。在 Scrapy 中,自定义 Downloader Middleware 实现代理 IP 动态切换,可增强爬虫的稳定性和隐蔽性。以下是具体步骤。首先要准备代理 IP 池。可以从代理 IP 提供商处获取代理 IP,或者使用开源的代理 IP 爬虫项目抓取免费代理 IP。将这些代理 IP 存储在一个列表或数据库中,形成代理 IP 池。接着创建自定义的 Downloader Middleware 类。在 Scrapy 项目中创建一个新的 Python 文件,例如。原创 2025-03-01 00:19:38 · 833 阅读 · 0 评论 -
Python异常处理面试题及参考答案
在 Python 里,异常是程序运行时出现的错误状况。当程序执行过程中遇到无法处理的情况,就会抛出异常。例如,试图打开一个不存在的文件,或者进行不合法的数学运算(像除以零),都会触发相应的异常。Python 有很多内置异常类型,如等,每种异常都代表特定的错误情况。程序需要异常处理机制的原因有多个。首先,增强程序的健壮性。在实际应用中,程序会面临各种不可预测的情况,如用户输入错误、文件丢失、网络连接中断等。如果没有异常处理,程序遇到这些错误就会崩溃,给用户带来不好的体验。原创 2025-02-27 21:23:55 · 543 阅读 · 0 评论 -
Python面向对象面试题及参考答案
面向对象编程(Object-Oriented Programming,OOP)是一种编程范式,它将数据和操作数据的方法封装在一起,形成对象。这种编程方式模拟了现实世界中事物的特征和行为,使得程序的结构更加清晰、易于维护和扩展。在面向对象编程中,对象是类的实例。类是一种抽象的概念,它定义了对象的属性和方法。属性是对象的特征,而方法是对象的行为。例如,我们可以定义一个 “汽车” 类,这个类包含了汽车的属性(如颜色、品牌、型号等)和方法(如启动、加速、刹车等)。原创 2025-02-28 00:02:16 · 499 阅读 · 0 评论 -
指标异动拆解:数据分析师的实战指南
在数据分析的世界里,指标异动指的是业务指标出现长期、持续性且偏离常规走势的变化。这不仅仅是数字上的起伏,更像是业务发出的“信号”,提醒我们某些地方可能出了问题,或者隐藏着未被发现的机会。比如,电商平台的销售额突然暴跌,或者某个APP的日活用户数意外飙升,这些都可能是指标异动的表现。但要注意,异动和普通波动可不是一回事。真正的异动往往需要我们跳出数据的表面,去探究背后的业务含义。这就要求分析师不仅要对数字敏感,更得对业务有深刻的理解。只有这样,才能在茫茫数据海中抓住那些值得深挖的“异常信号”。原创 2025-02-27 00:13:28 · 766 阅读 · 0 评论 -
Linux Crontab面试题及参考答案
设计每月最后一天凌晨执行任务的 Crontab 表达式颇具挑战性,因为不同月份的天数不同。在 Linux 系统中,可借助lastday这个特殊关键字来实现。分钟域设为0,确保整点执行;小时域也设为0,即凌晨时刻;日期域使用lastday,表示每月最后一天;月份域用,涵盖所有月份;星期域同样为,不考虑星期因素。命令域为要执行的具体命令或脚本。。比如,若要执行的脚本是,则表达式为。系统会在每个月的最后一天凌晨 0 点,自动执行该脚本,适合执行如每月数据清理、日志归档等任务。原创 2025-02-25 00:12:51 · 481 阅读 · 0 评论 -
大厂数据仓库数仓建模面试题及参考答案
数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。它主要是为企业提供数据分析和决策支持,将不同来源的数据进行整合、清洗、转换,以统一的格式存储,方便进行复杂的查询和分析。数据库则是按照数据结构来组织、存储和管理数据的仓库,主要用于事务处理,比如企业的业务系统,如订单系统、库存系统等,负责数据的实时读写操作,保证数据的一致性和完整性。两者的区别体现在多个方面。在应用场景上,数据库主要用于日常业务操作,处理联机事务处理(OLTP),比如用户下单、商品入库等操作;原创 2025-02-24 07:08:33 · 656 阅读 · 0 评论 -
毕业十几年的计算老程序员掏心窝分享,如果重回大学我会这样做逆袭
我毕业十几年了,从一个农村做题家一步步走到现在,在大城市买了房,有了自己的家庭。但说实话,一路走来,也有很多遗憾和感慨。今天就想跟你们唠唠,如果我能重新读大学,我会怎么做。原创 2025-02-19 11:16:50 · 355 阅读 · 0 评论 -
Flink SQL与Doris实时数仓Join实战教程(理论+实例保姆级教程)
在实时数仓中,由于数据不断流动,如果状态数据长时间保留,会占用大量内存。例如,通过设置水位线来标记流中数据的时间进展,确保在进行连接操作时,只处理已经到达的最新数据,避免因数据乱序导致的错误连接。💡想象一下,我们有两个数据流,就像两条流淌的数据河流,Regular Joins 要做的就是在这两条河流中找到相互匹配的数据元素,并将它们组合在一起。在实时流数据中,每个数据元素都带有时间属性,而 Interval Joins 就是利用这些时间属性,在不同流的数据之间找到时间上有交集的记录,并将它们连接起来。原创 2025-02-18 07:25:15 · 1011 阅读 · 0 评论 -
同花顺大数据面试题及参考答案(2万字长文)
Redis 分布式锁的原理主要基于 Redis 的原子指令。利用 Redis 的SETNX(SET if Not eXists)命令,当一个客户端尝试获取锁时,使用SETNX命令设置一个特定的键,如果键不存在,则设置成功,客户端获取到锁;如果键已存在,说明锁已被其他客户端获取,当前客户端获取锁失败。为了防止锁一直被持有导致死锁,还会给锁设置一个过期时间,通过EXPIRE命令来实现。在应用方面,分布式锁常用于多个节点或服务需要访问共享资源的场景。比如在电商系统中,库存扣减操作就需要使用分布式锁。原创 2025-02-17 07:17:17 · 737 阅读 · 0 评论 -
数智融合:如何利用大模型解决离线数仓历史项目烟囱式开发的完整解决方案
许多企业的离线数仓存在烟囱式开发的问题,各个业务部门独立开发自己的数据处理流程和 SQL 代码,缺乏统一的规划和标准。这导致不同业务线的 SQL 文件分散在不同的地方,难以进行统一的管理和维护。有时项目为了赶进度,没时间考虑全局优化,匆忙写SQL上线,也会存在烟囱式问题。烟囱式开发会造成计算资源浪费,造成指标不一致,并为以后开发指标埋下隐患。如果人工的分析这些问题,如果项目复杂或之前没接手过的,会耗费不少时间,可以借助大模型来辅助整个优化过程,达到事半功倍的效果。原创 2025-02-12 00:09:26 · 621 阅读 · 0 评论 -
如何对比某个表在Hive和Doris磁盘空间大小和Doris表如何优化存储空间保姆级教程(亲试可用)
在列式存储中,表的每一列会独立存储,这为压缩技术的应用提供了便利,从而提高了存储效率。数据的顺序越有规律,压缩算法在压缩时可以识别出更多的重复模式,从而提升压缩比。在 Hive 中查看某个表占用的磁盘空间,通常依赖于底层的存储系统(如 HDFS)来查询表的实际存储情况。:通过合并小文件,减少存储碎片,提高存储效率。列中空值的比例较高时,压缩算法可能会更有效,因为压缩算法会将这些空值作为一种特殊的模式进行编码,减少存储空间。通常我们关注的并不是表定义中的字段长度,而是实际数据中的最大值或者存储中的数据特征。原创 2025-02-11 00:06:28 · 619 阅读 · 0 评论 -
Flink 背压与消息积压难题大揭秘!速看解决攻略
使用自定义 Partitioner,更均匀地分配数据。例如,使用。原创 2025-02-10 00:09:50 · 734 阅读 · 0 评论 -
Flink 调用海豚调度器 SQL 脚本实现1份SQL流批一体化的方案和可运行的代码实例
在大数据处理领域,传统的数据处理方式通常将批处理和流处理分开进行。批处理主要用于处理历史数据,通常以固定时间间隔(如每天、每周)进行数据处理和分析;而流处理则专注于实时数据的处理,对数据进行实时的响应和分析。这种分离的处理方式导致了开发和维护的复杂性增加,需要为批处理和流处理分别编写代码,并且在代码逻辑发生变化时,需要在两个不同的代码库中进行修改,容易出现不一致的情况。流批一体化的概念应运而生,它旨在通过统一的编程模型和执行引擎,实现批处理和流处理的统一。原创 2025-02-08 11:52:12 · 883 阅读 · 0 评论 -
一文吃透!DataStage 全面概述与核心知识要点大公开
DataStage 是 IBM 公司精心打造的数据集成工具,在 IBM WebSphere Data Integration Suite 里占据着举足轻重的地位。它主要应用于 ETL(Extract, Transform, Load)流程,也就是数据的抽取、转换与加载。想象一下,企业的数据就像一座庞大的宝藏库,里面有各种各样的宝贝(数据),但这些宝贝可能分散在不同的地方,而且有的还需要打磨(转换)才能真正发挥价值。原创 2025-02-08 00:09:07 · 511 阅读 · 0 评论 -
费米估算轻松破解数据分析面试估算类智力题
费米估算,源自著名物理学家恩里科・费米的独特思维方式。这位杰出的科学家不仅在物理学领域取得了卓越的成就,还以其独特的估算技巧闻名于世。费米估算的核心在于,把一个看似无从下手的复杂问题,巧妙地分解成一个个简单易懂、易于处理的子问题,然后凭借我们的生活经验和常识,对这些子问题进行合理估算,最终得出一个近似的答案。说起费米估算的起源,有一个有趣的故事。在芝加哥大学的课堂上,费米向学生们抛出了一个看似 “无解” 的难题 ——“芝加哥市到底有多少调琴师?” 面对这个毫无头绪的问题,学生们一脸茫然。原创 2025-02-06 20:28:07 · 803 阅读 · 0 评论 -
顺丰大数据开发面试题及参考答案
窗口函数是一种在数据分析中非常有用的函数,它可以在不改变数据行数的情况下,对数据进行分组、排序和计算。以下是一些常用的窗口函数及其作用。ROW_NUMBER () 函数会为查询结果中的每一行分配一个唯一的行号,行号从 1 开始,按照指定的排序规则依次递增。SELECTscore,FROMRANK()RANK () 函数也用于为数据行分配排名,但与 ROW_NUMBER () 不同的是,当出现相同的值时,RANK () 函数会为这些相同的值分配相同的排名,并且下一个排名会跳过相应的数量。原创 2025-02-06 07:19:42 · 543 阅读 · 0 评论 -
顺丰数据分析(数据挖掘)面试题及参考答案
决策树是一种非常基础且常用的机器学习算法,它可以用于分类和回归任务。决策树的核心思想是通过对数据特征的一系列判断,将数据逐步划分到不同的类别或预测出具体的数值。想象一下,我们要根据一些特征来判断一个水果是苹果还是橙子。我们可能会先看它的颜色,如果是红色,那可能更倾向于是苹果;如果是橙色,那可能是橙子。这就是一个简单的决策过程,决策树就是将这样的决策过程用树形结构表示出来。决策树的每个内部节点表示一个特征,分支表示该特征的不同取值,而叶子节点则表示最终的分类或预测结果。原创 2025-02-05 06:53:46 · 1656 阅读 · 0 评论 -
猫眼大数据开发面试题及参考答案
Java 的基本数据类型是 Java 语言中最基础的数据类型,它们用于存储简单的值。原创 2025-02-03 13:47:10 · 962 阅读 · 0 评论 -
360大数据面试题及参考答案
在数据结构中,链表反转是一个常见的操作。原创 2025-01-28 09:08:39 · 942 阅读 · 0 评论 -
VIVO大数据面试题及参考答案
例如,在一个包含大量订单记录的表中,按照订单时间字段建立 B - Tree 索引,那么在查询某个时间段内的订单时,就可以利用 B - Tree 索引快速定位到符合条件的记录,大大提高查询效率。环境的状态可以是离散的,像游戏中的不同关卡;它可以是游戏中的角色、自动驾驶汽车中的决策系统等,通过不断尝试不同的行动,观察环境的反应,从而积累经验,变得越来越 “聪明”。比如在大数据团队中,可能会负责数据处理和分析相关的工作,包括收集和整理大量的原始数据,对数据进行清洗,去除噪声和异常值,确保数据的质量。原创 2025-01-23 00:04:04 · 817 阅读 · 0 评论 -
大华大数据开发面试题及参考答案
内存泄露是指程序在运行过程中,不断申请内存空间却没有及时释放不再使用的内存,导致可用内存逐渐减少,最终可能影响程序的正常运行甚至导致系统崩溃的现象。对象引用未正确释放:当对象之间存在强引用关系且不再需要使用某个对象时,其他对象仍然持有对它的引用,导致垃圾回收器无法回收该对象占用的内存。例如,在使用集合类时,如果向集合中添加了对象,之后没有从集合中移除不再使用的对象,即使该对象在其他地方已经没有用处,集合中的引用也会阻止它被回收。资源未关闭。原创 2025-01-20 00:06:57 · 1197 阅读 · 0 评论 -
字节腾讯阿里大厂面经汇总:Java集合(容器)大厂面试题及参考答案
ArrayList的扩容机制以及删除操作的时间复杂度ArrayList是Java中非常常用的一个集合类,它是基于数组实现的动态数组。当我们创建一个ArrayList时,如果不指定初始容量,它会有一个默认的初始容量(通常是10)。当我们向ArrayList中添加元素时,如果元素的数量达到了当前的容量,ArrayList就需要进行扩容操作。扩容的过程是这样的:它会创建一个新的数组,新数组的容量通常是原来数组容量的1.5倍(在Java8及以后的版本中,这个倍数可能会有所调整,但大致是原创 2025-01-20 00:06:40 · 833 阅读 · 0 评论 -
采用海豚调度器+Doris开发数仓保姆级教程(满满是踩坑干货细节,持续更新)
如果需要设置动态分区永不过期,要如下面这样设置: 'dynamic_partition.start' = '-2147483648',如果生命周期不要那么长,只需要30天,可以设置: 'dynamic_partition.start' = '30'。可以用navicat等工具,像连接mysql一样(不同的是端口默认是9030),先直接在doris进行开发调试,查询速度扛扛的,开发效率提升好多。的方式时来覆盖每天的分区。如果要接入的数据是主键不重复的,可以设置为Unique模型,这样可以删除或修改。原创 2025-01-17 00:06:30 · 1122 阅读 · 0 评论 -
一文读懂高频考题!进程、线程、协程最全方位对比剖析
需要注意的是,系统开销并不是固定不变的,它会受到很多因素的影响。比如在x86架构和ARM架构的处理器上,由于处理器的内部结构和指令集的差异,执行同样的操作可能会有不同的时间消耗。因为CPU缓存是为了提高数据访问速度而设置的,如果频繁切换,之前缓存的数据可能就不再有用,需要重新从内存中读取,这就会增加额外的时间成本,从而增加系统开销。这种切换不需要操作系统内核介入,仅仅是保存当前协程的一些简单状态信息,如程序计数器(指示下一条要执行的指令位置)和少量寄存器的值,以及恢复下一个要执行的协程的相关状态。原创 2025-01-16 00:09:23 · 870 阅读 · 0 评论 -
海康大数据面试题及参考答案
Spark 主要包含以下几个关键组件。首先是 Driver,它是 Spark 应用程序的核心控制组件。Driver 负责解析用户提交的应用程序代码,将其转换为一系列的计算任务。例如,当用户编写一个 Spark 应用程序来处理一个数据集,如进行数据清洗和分析,Driver 会理解这个应用程序的目标和逻辑。Driver 还负责资源的申请和任务的调度。它会与集群的资源管理系统(如 YARN 或者 Mesos)进行通信,请求执行任务所需的资源,包括内存、CPU 等。原创 2025-01-14 00:08:17 · 1046 阅读 · 0 评论 -
大厂面试必问JVM内存管理面试题最强集合,看你学废了几条?
讲一下 Java 的虚拟机。Java 虚拟机(JVM)是 Java 程序的运行核心。它是一个抽象的计算机,有自己的指令集和运行时数据区。JVM 主要负责执行 Java 字节码。字节码是一种中间形式的代码,当我们编写 Java 源程序后,通过编译器(如 javac)将其编译成字节码文件(.class 文件)。JVM 读取字节码文件,并将其解释或编译成机器码来运行。JVM 有多种实现,比如 HotSpot VM、J9 VM 等。其中 HotSpot VM 是最常用的一种。它采用了混合原创 2025-01-13 00:00:54 · 625 阅读 · 0 评论