【Java实战系列】「技术盲区」Double与Float的坑与解决办法以及BigDecimal的取而代之

总结:绘上一张Kakfa架构思维大纲脑图(xmind)

image

其实关于Kafka,能问的问题实在是太多了,扒了几天,最终筛选出44问:基础篇17问、进阶篇15问、高级篇12问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?

若是对Kafka的知识还回忆不起来,不妨先看我手绘的知识总结脑图(xmind不能上传,文章里用的是图片版)进行整体架构的梳理

梳理了知识,刷完了面试,如若你还想进一步的深入学习解读kafka以及源码,那么接下来的这份《手写“kafka”》将会是个不错的选择。

  • Kafka入门

  • 为什么选择Kafka

  • Kafka的安装、管理和配置

  • Kafka的集群

  • 第一个Kafka程序

  • Kafka的生产者

  • Kafka的消费者

  • 深入理解Kafka

  • 可靠的数据传递

  • Spring和Kafka的整合

  • SpringBoot和Kafka的整合

  • Kafka实战之削峰填谷

  • 数据管道和流式处理(了解即可)

image

image

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

基本运算超预期

System.out.println( 0.2 + 0.7 );

// 打印:0.8999999999999999 纳尼?

数据自增超预期

float f1 = 8455263f;

for (int i = 0; i < 10; i++) {

System.out.println(f1);

f1++;

}

// 打印:8455263.0

// 打印:8455264.0

// 打印:8455265.0

// 打印:8455266.0

// 打印:8455267.0

// 打印:8455268.0

// 打印:8455269.0

// 打印:8455270.0

// 打印:8455271.0

// 打印:8455272.0

float f2 = 84552631f;

for (int i = 0; i < 10; i++) {

System.out.println(f2);

f2++;

}

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

所以说用浮点数(包括double和float)处理问题有非常多隐晦的坑在等着咱们!

分析原因出处

我们就以第一个典型现象为例来分析一下:

System.out.println( 1f == 0.99999999f );

直接用代码去比较1和0.99999999,居然打印出true!这说明了什么?这说明了计算机压根区分不出来这两个数。这是为什么呢?

深入分析

输入的这两个浮点数只是我们人类肉眼所看到的具体数值,是我们通常所理解的十进制数,但是计算机底层在计算时可不是按照十进制来计算的,学过计算机组成原理的人都知道,计算机底层最终都是基于像010100100100110011011这种0、1二进制来完成的。

将这两个十进制浮点数转化到二进制,直接给出结果(把它转换到IEEE 754 Single precision 32-bit,也就float类型对应的精度)

1.0(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

0.99999999(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

这两个十进制浮点数的底层二进制表示是一样的,怪不得==的判断结果返回true!

但是1f == 0.9999999f返回的结果是符合预期的,打印false,我们也把它们转换到二进制模式下看看情况:

1.0(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

0.9999999(十进制)

00111111 01111111 11111111 11111110(二进制)

0x3F7FFFFE(十六进制)

它俩的二进制数字表示确实不一样,这是理所应当的结果。

那么为什么0.99999999的底层二进制表示竟然是:00111111 10000000 00000000 00000000呢?

这不明明是浮点数1.0的二进制表示吗?主要要分一下浮点数的精度问题了。

浮点数的精度问题!

学过 《计算机组成原理》 这门课的小伙伴应该都知道,浮点数在计算机中的存储方式遵循IEEE 754 浮点数计数标准,可以用科学计数法表示为:

只要给出:符号(S)、阶码部分(E)、尾数部分(M) 这三个维度的信息,一个浮点数的表示就完全确定下来了,所以float和double这两种浮点数在内存中的存储结构如下所示:

符号部分(S)

0-正 1-负

阶码部分(E)(指数部分):

对于float型浮点数,指数部分8位,考虑可正可负,因此可以表示的指数范围为-127 ~ 128

对于double型浮点数,指数部分11位,考虑可正可负,因此可以表示的指数范围为-1023 ~ 1024

尾数部分(M):

浮点数的精度是由尾数的位数来决定的:

  • 对于float型浮点数,尾数部分23位,换算成十进制就是 2^23=8388608,所以十进制精度只有6 ~ 7位;

  • 对于double型浮点数,尾数部分52位,换算成十进制就是 2^52 = 4503599627370496,所以十进制精度只有15 ~ 16位

对于上面的数值0.99999999f,很明显已经超过了float型浮点数据的精度范围,出问题也是在所难免的。

精度问题如何解决

涉及商品金额、交易值、货币计算等这种对精度要求很高的场景该怎么办呢?

最后我们该如何学习?

1、看视频进行系统学习

这几年的Crud经历,让我明白自己真的算是菜鸡中的战斗机,也正因为Crud,导致自己技术比较零散,也不够深入不够系统,所以重新进行学习是很有必要的。我差的是系统知识,差的结构框架和思路,所以通过视频来学习,效果更好,也更全面。关于视频学习,个人可以推荐去B站进行学习,B站上有很多学习视频,唯一的缺点就是免费的容易过时。

另外,我自己也珍藏了好几套视频资料躺在网盘里,有需要的我也可以分享给你:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

2、读源码,看实战笔记,学习大神思路

“编程语言是程序员的表达的方式,而架构是程序员对世界的认知”。所以,程序员要想快速认知并学习架构,读源码是必不可少的。阅读源码,是解决问题 + 理解事物,更重要的:看到源码背后的想法;程序员说:读万行源码,行万种实践。

Spring源码深度解析:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Mybatis 3源码深度解析:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Redis学习笔记:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

Spring Boot核心技术-笔记:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

3、面试前夕,刷题冲刺

面试的前一周时间内,就可以开始刷题冲刺了。请记住,刷题的时候,技术的优先,算法的看些基本的,比如排序等即可,而智力题,除非是校招,否则一般不怎么会问。

关于面试刷题,我个人也准备了一套系统的面试题,帮助你举一反三:

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。

人生短暂,别稀里糊涂的活一辈子,不要将就。

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

中…(img-lPCFgqDg-1715478593932)]

只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。

人生短暂,别稀里糊涂的活一辈子,不要将就。

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值