总结:绘上一张Kakfa架构思维大纲脑图(xmind)
其实关于Kafka,能问的问题实在是太多了,扒了几天,最终筛选出44问:基础篇17问、进阶篇15问、高级篇12问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?
若是对Kafka的知识还回忆不起来,不妨先看我手绘的知识总结脑图(xmind不能上传,文章里用的是图片版)进行整体架构的梳理
梳理了知识,刷完了面试,如若你还想进一步的深入学习解读kafka以及源码,那么接下来的这份《手写“kafka”》将会是个不错的选择。
-
Kafka入门
-
为什么选择Kafka
-
Kafka的安装、管理和配置
-
Kafka的集群
-
第一个Kafka程序
-
Kafka的生产者
-
Kafka的消费者
-
深入理解Kafka
-
可靠的数据传递
-
Spring和Kafka的整合
-
SpringBoot和Kafka的整合
-
Kafka实战之削峰填谷
-
数据管道和流式处理(了解即可)
基本运算超预期
System.out.println( 0.2 + 0.7 );
// 打印:0.8999999999999999 纳尼?
数据自增超预期
float f1 = 8455263f;
for (int i = 0; i < 10; i++) {
System.out.println(f1);
f1++;
}
// 打印:8455263.0
// 打印:8455264.0
// 打印:8455265.0
// 打印:8455266.0
// 打印:8455267.0
// 打印:8455268.0
// 打印:8455269.0
// 打印:8455270.0
// 打印:8455271.0
// 打印:8455272.0
float f2 = 84552631f;
for (int i = 0; i < 10; i++) {
System.out.println(f2);
f2++;
}
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
// 打印:8.4552632E7 纳尼?不是 +1了吗?
所以说用浮点数(包括double和float)处理问题有非常多隐晦的坑在等着咱们!
分析原因出处
我们就以第一个典型现象为例来分析一下:
System.out.println( 1f == 0.99999999f );
直接用代码去比较1和0.99999999,居然打印出true!这说明了什么?这说明了计算机压根区分不出来这两个数。这是为什么呢?
深入分析
输入的这两个浮点数只是我们人类肉眼所看到的具体数值,是我们通常所理解的十进制数,但是计算机底层在计算时可不是按照十进制来计算的,学过计算机组成原理的人都知道,计算机底层最终都是基于像010100100100110011011这种0、1二进制来完成的。
将这两个十进制浮点数转化到二进制,直接给出结果(把它转换到IEEE 754 Single precision 32-bit,也就float类型对应的精度)
1.0(十进制)
↓
00111111 10000000 00000000 00000000(二进制)
↓
0x3F800000(十六进制)
0.99999999(十进制)
↓
00111111 10000000 00000000 00000000(二进制)
↓
0x3F800000(十六进制)
这两个十进制浮点数的底层二进制表示是一样的,怪不得==的判断结果返回true!
但是1f == 0.9999999f返回的结果是符合预期的,打印false,我们也把它们转换到二进制模式下看看情况:
1.0(十进制)
↓
00111111 10000000 00000000 00000000(二进制)
↓
0x3F800000(十六进制)
0.9999999(十进制)
↓
00111111 01111111 11111111 11111110(二进制)
↓
0x3F7FFFFE(十六进制)
它俩的二进制数字表示确实不一样,这是理所应当的结果。
那么为什么0.99999999的底层二进制表示竟然是:00111111 10000000 00000000 00000000呢?
这不明明是浮点数1.0的二进制表示吗?主要要分一下浮点数的精度问题了。
浮点数的精度问题!
学过 《计算机组成原理》 这门课的小伙伴应该都知道,浮点数在计算机中的存储方式遵循IEEE 754 浮点数计数标准,可以用科学计数法表示为:
只要给出:符号(S)、阶码部分(E)、尾数部分(M) 这三个维度的信息,一个浮点数的表示就完全确定下来了,所以float和double这两种浮点数在内存中的存储结构如下所示:
符号部分(S)
0-正 1-负
阶码部分(E)(指数部分):
对于float型浮点数,指数部分8位,考虑可正可负,因此可以表示的指数范围为-127 ~ 128
对于double型浮点数,指数部分11位,考虑可正可负,因此可以表示的指数范围为-1023 ~ 1024
尾数部分(M):
浮点数的精度是由尾数的位数来决定的:
-
对于float型浮点数,尾数部分23位,换算成十进制就是 2^23=8388608,所以十进制精度只有6 ~ 7位;
-
对于double型浮点数,尾数部分52位,换算成十进制就是 2^52 = 4503599627370496,所以十进制精度只有15 ~ 16位
对于上面的数值0.99999999f,很明显已经超过了float型浮点数据的精度范围,出问题也是在所难免的。
精度问题如何解决
涉及商品金额、交易值、货币计算等这种对精度要求很高的场景该怎么办呢?
最后我们该如何学习?
1、看视频进行系统学习
这几年的Crud经历,让我明白自己真的算是菜鸡中的战斗机,也正因为Crud,导致自己技术比较零散,也不够深入不够系统,所以重新进行学习是很有必要的。我差的是系统知识,差的结构框架和思路,所以通过视频来学习,效果更好,也更全面。关于视频学习,个人可以推荐去B站进行学习,B站上有很多学习视频,唯一的缺点就是免费的容易过时。
另外,我自己也珍藏了好几套视频资料躺在网盘里,有需要的我也可以分享给你:
2、读源码,看实战笔记,学习大神思路
“编程语言是程序员的表达的方式,而架构是程序员对世界的认知”。所以,程序员要想快速认知并学习架构,读源码是必不可少的。阅读源码,是解决问题 + 理解事物,更重要的:看到源码背后的想法;程序员说:读万行源码,行万种实践。
Spring源码深度解析:
Mybatis 3源码深度解析:
Redis学习笔记:
Spring Boot核心技术-笔记:
3、面试前夕,刷题冲刺
面试的前一周时间内,就可以开始刷题冲刺了。请记住,刷题的时候,技术的优先,算法的看些基本的,比如排序等即可,而智力题,除非是校招,否则一般不怎么会问。
关于面试刷题,我个人也准备了一套系统的面试题,帮助你举一反三:
只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。
人生短暂,别稀里糊涂的活一辈子,不要将就。
中…(img-lPCFgqDg-1715478593932)]
只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。
人生短暂,别稀里糊涂的活一辈子,不要将就。