- 博客(955)
- 资源 (13)
- 问答 (2)
- 收藏
- 关注
原创 AttributeError: module ‘torch‘ has no attribute ‘irfft‘ ‘rfft‘‘
torch rfft
2023-02-22 20:16:27
3704
1
原创 【可解释】|弱监督定位
https://github.com/jbeomlee93/AdvCAMhttps://github.com/zhaozhengChen/ReCAMhttps://github.com/shaofeifei11/CI-CAMhttps://github.com/CVI-SZU/CCAMhttps://github.com/weixuansun/infercamhttps://github.com/shjo-april/PuzzleCAM
2022-12-01 13:27:33
1070
原创 【目标检测】|批大小如何影响模型学习
这篇论文的作者“关于深度学习的大批量训练:泛化差距和锐利最小值”,声称这是因为大批量方法往往会导致模型卡在局部最小值中。超参数定义了更新内部模型参数之前要处理的样本数,这是确保模型达到最佳性能的关键步骤之一。(3)Batch Normalization 使用同批次的统计平均和偏差对数据进行正规化,加速训练。学习率和批量大小密切相关——小批量在较小的学习率下表现最好,而大批量在较大的学习率下表现最好。(1)对一个批次的多个训练数据同时进行 f(x W +b) 操作,更容易GPU并行化处理。
2022-11-03 20:45:35
1064
原创 TensorBoard histogram直方图 坐标轴数值计算含义
其中,横轴表示值,纵轴表示数量,每个切片显示一个直方图,切片按步骤(步数或时间)排列;旧的切片较暗,新的切片颜色较浅.如图,可以看到在第393步时,以4.91为中心的bin中有161个元素.。另外,直方图切片并不总是按步数或时间均匀分布,而是通过水塘抽样/reservoir sampling来抽取所有直方图的一个子集,以节省内存.。
2022-10-23 22:49:08
834
原创 【目标检测】|yolov5候选框计算
计算所有真实框长宽与9组候选框长宽的比值(比值应小于1),在9组长宽比值中选择长宽中的最小值x(表示找到9个候选框长或宽哪一个与真实框最不贴合)。而后在9组最小值中选择最大值best(在9组不够贴合的候选框中选择最贴合的那个)。共得到真实框数量个最大值best。计算最优候选框best阈值大于25%所占比例作为bpr,计算9组候选框阈值大于25%所占比例作为aat。
2022-10-22 23:08:42
1138
原创 【目标检测】IOU loss CIOU
https://zhuanlan.zhihu.com/p/102956248https://zhuanlan.zhihu.com/p/110799558
2022-10-21 11:10:00
724
原创 【目标检测】感受野
如下图是一个全卷积网络,输入图像分辨率的改变会导致输出的分辨率有所改变,比如下图右边的部分最后的特征图出来是3×3的。结合之前的感受野的介绍和计算,来看下图中间的图示,最左边表示的是3×3的特征图上每个位置在原图的感受野中心,这里由红点表示。其实对于检测网络网络的训练可以视为一种高效的分类网络训练,因为一个检测的样本一次可以产生非常多分类的样本,每个分类样本就是感受野对应的图像区域,框的回归其实被当做一件附带的事情给干了,因为无论是one-stage还是two-stage的方法,框的预测都是和类别无关的!
2022-10-19 10:13:23
264
原创 谷歌浏览器 无法使用网页翻译
管理员权限打开hosts文件:C:\Windows\System32\drivers\etc\hosts。如220.181.174.98 translate.googleapis.com,修改后并保存。复制好的IP地址 translate.googleapis.com,在命令行输入ping google.cn,并复制IP地址。在hosts文件最末尾加入。cmd,打开命令提示符。
2022-10-08 16:31:16
343
1
原创 RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation
【代码】RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation。
2022-10-05 18:46:25
861
原创 python 判断值a是否在列表中,给出元素在list列表中的位置
【代码】python 判断值a是否在列表中,给出元素在list列表中的位置。
2022-09-26 16:51:29
2285
原创 _pickle.UnpicklingError: STACK_GLOBAL requires str
将数据集中labels.cache文件去掉即可。
2022-09-25 09:48:08
369
原创 AttributeError:module ‘distutils‘ has no attribute ‘version
setuptools包版本过高。
2022-09-24 13:43:35
351
原创 【目标检测】|APs APm APl AR1 AR10代码 计算
【代码】【目标检测】|APs APm APl AR1 AR10代码 计算。
2022-09-22 20:13:28
1630
1
原创 Ubuntu系统kill后,显示看不到进程,但GPU显存仍被占用问题
Ubuntu系统有时候会出现GPU显存显示占满,但是使用nvidia-smi命令 kill python 后仍然显示内存占用。
2022-09-18 22:18:20
1521
原创 【目标检测】|yolov6 结构代码分析
yolov6s整体:在build_network中生成backbone,neck detect (其中,backbone为EfficientRep)EfficientRep位于yolov6/model/efficentrep.py。
2022-09-14 20:47:58
3380
原创 Typora旧版本无法使用 This beta version of Typora is expired, please download and install a newer
2.找到这个路径:计算机\HKEY_CURRENT_USER\SOFTWARE\Typora。1.win+R调用运行窗口,输入regedit命令进入注册表界面。4.在administrator用户()权限中选择拒绝。3右键Typora选择权限菜单。
2022-09-12 22:02:31
305
原创 【目标检测】|YOLOV6 YOLOv6: A Single-Stage Object Detection Framework for Industrial Application
YOLOv6:一种用于工业应用的单级目标检测框架吸收了最近网络设计、训练策略、测试技术、量化和优化方法的思想。构建一套不同规模的可部署网络,以适应多样化的用例。我们的量化版本的YOLOv6-S甚至达到869fps时AP43.3%。(1)RepVGG[3]的重新参数化未能充分利用,小型网络,普通单路径架构是更好的选择,但对于大型模型,参数的指数增长和单路径架构的计算成本使其不可行。(2)基于再参数化的检测器的量化也需要细致的处理,否则,由于其在训练和推理期间的异构配置,很难处理性能退化。
2022-09-09 08:45:57
2959
原创 【模型剪枝】| yolov5 模型分析及剪枝
其中的add属性很重要,决定了是否有shortcut,其实在yolov5的backbone中的Bottleneck都是有shortcut的,在head中的Bottleneck都没有shortcut。255是3×(80+5),对应3个anchor, 80个类别,使用bce做二分类判断是否为当前类别,4个坐标预测,1个是判断是否为目标或者背景。先通过一个Conv,然后分别进行不同kernel的pooling,3个pooling和输入拼接,在通过一个Conv。拼接层,用于拼接之前的层,例如。
2022-09-05 15:48:31
2103
原创 【模型量化】|偏差修正 Fighting Quantization Bias With Bias
而网络在经过量化后,同样的数据经过该层后,其均值已经不符合原BN统计出的均值,也即数据分布发生了变化(注意BN存在于多个层,这里说的数据分布是泛指各个层的激活,而不仅仅指第一层网络的输入)。如上图所示,是32张图片经过MobileNet某层某channel后激活值分布情况,Q是量化模型,FP是float模型,可以看到两个数据分布是不一样的,均值会发生偏移。文章认为量化会使网络激活值的均值发生偏移,通过对偏移进行修正,可以有效提高量化模型的性能。网络BN会统计出数据经过某层后的均值和方差信息。...
2022-09-01 17:31:28
752
原创 【目标检测】|yolov5 yaml文件
该anchor尺寸是为输入图像640×640分辨率预设的,实现了即可以在小特征图(feature map)上检测大目标,也可以在大特征图上检测小目标。三种尺寸的特征图,每个特征图上的格子有三个尺寸的anchor。yolov5-5yolov5-6from:输入来自那一层,-1代表上一层,1代表第1层,3代表第3层number:与depth_multiple结合确定网络的深度,而且number数量要大于1module:与width_multiple结合确定网络的宽度,主要是改变卷积核的数量。...
2022-09-01 11:22:36
3263
1
原创 【知识蒸馏】|Distilling the Knowledge in a Neural Network
soft target是来自于teacher model的检测结果。Hinton的文章"Distilling the Knowledge in a Neural Network"首次提出了知识蒸馏(暗知识提取)的概念,通过引入与教师网络(Teacher network:复杂、但预测精度优越)相关的软目标(Soft-target)作为Total loss的一部分,以诱导学生网络(Student network:精简、低复杂度,更适合推理部署)的训练,实现知识迁移(Knowledge transfer)。
2022-08-25 16:25:12
279
原创 【tensorboard】|解决ValueError: Duplicate plugins for name projector
报错的原因就是安装重复插件(安装了多个tensorboard)。删除tensorboard-2.9.1.dist-info。
2022-08-20 11:11:18
226
原创 【模型剪枝】|Learning Efficient Convolutional Networks through Network Slimming
作用对象:BN层(和不重要的通道)作用方式: imposes sparsity-induced regularization on the scaling factors(比例因子)通过对批量归一化(BN)层中的缩放因子强加L1正则化将BN缩放因子的值逼近零,因为每个缩放因子对应于特定的卷积通道(或完全连接的层中的神经元),使得我们能够识别不重要的通道。这有助于在随后的步骤中进行通道层次的修剪。
2022-08-20 11:09:17
594
原创 【python】|ImportError: cannot import name ‘_validate_lengths‘
numpy 版本过高可降低版本,此处通过增加代码找到:Anaconda3/lib/python3.6/site-packages/numpy/lib/arraypad.py 最后添加下面两个函数保存,重新加载即可消除错误
2022-07-12 11:20:02
232
win和linux操作系统文件互传 WinSCP-5.17.6-Setup
2020-10-09
Qt安装遇到的问题修复解决方案
2020-08-22
labelme2COCO格式转换,包含了面积计算
2019-04-09
《数学建模算法与应用习题答案》课后习题源码pdf
2018-11-10
C++/OpenCV2.4.xx印刷数字精确识别源码
2018-11-06
ubuntu磁盘空间再分配 不重装系统情况下如何把/usr多余空间给/home
2019-05-12
Opencv image watch auto maximize contrast
2018-06-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人