【可解释】|深层网络的公理化属性(Axiomatic Attribution for Deep Networks)
Axiomatic Attribution for Deep Networks, ICML 2017研究了将深层网络的预测归因于其输入特征的问题, 简单的说就是通过研究输入与输出的关系,去理解模型的输入-输出行为。并定义归因应该满足的2个基本公理,敏感性和实现不变性作者发现其他关于特征归因方法的文献中,对于2条公理,至少有一条是不满足的。这些文献包括DeepLift (Shrikumar et al., 2016; 2017), Layer-wise relevance propagation (