rrr2
码龄6年
  • 2,076,802
    被访问
  • 754
    原创
  • 442
    排名
  • 742
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2016-07-14
博客简介:

qq_35608277的博客

查看详细资料
  • 7
    领奖
    总分 4,454 当月 235
个人成就
  • 获得1,006次点赞
  • 内容获得621次评论
  • 获得5,374次收藏
创作历程
  • 52篇
    2022年
  • 144篇
    2021年
  • 255篇
    2020年
  • 153篇
    2019年
  • 206篇
    2018年
  • 55篇
    2017年
成就勋章
TA的专栏
  • 可解释
    13篇
  • word
    2篇
  • K210
    2篇
  • docker
    4篇
  • 特征提取网络
    1篇
  • 目标检测
    59篇
  • 去雾
    6篇
  • 视频目标检测
    2篇
  • 光流
    1篇
  • transformer
    3篇
  • NAS
    5篇
  • DARKNET
    1篇
  • 目标跟踪
    3篇
  • AGX XAVIER
    6篇
  • petalinux
    9篇
  • 模型量化
    15篇
  • 光学
    16篇
  • MFC
    6篇
  • FPGA图像
    2篇
  • ARM
    8篇
  • 模型剪枝
    4篇
  • pytorch学习
    35篇
  • PYNQ
    20篇
  • 图像处理基础
    45篇
  • 传感器
    2篇
  • CUDA
    6篇
  • 深度学习
    119篇
  • verilog
    45篇
  • HLS
    37篇
  • 算法
    8篇
  • 数据集
    4篇
  • 生成对抗网络
    5篇
  • matlab
    34篇
  • C++
    52篇
  • python
    88篇
  • 算法导论
    8篇
  • Ubuntu
    71篇
  • torch
    49篇
  • FPGA
    30篇
  • CNN部署
    4篇
  • tensorflow
    23篇
  • 机器学习
    3篇
  • caffe
    6篇
  • 推荐系统
    1篇
  • 视频分割
    4篇
  • 网络协议
    3篇
  • 凸优化
    2篇
  • csdn
    4篇
  • java
    1篇
  • mxnet
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络pytorch图像处理
  • 硬件开发
    fpga开发
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【可解释】|深层网络的公理化属性(Axiomatic Attribution for Deep Networks)

Axiomatic Attribution for Deep Networks, ICML 2017研究了将深层网络的预测归因于其输入特征的问题, 简单的说就是通过研究输入与输出的关系,去理解模型的输入-输出行为。并定义归因应该满足的2个基本公理,敏感性和实现不变性作者发现其他关于特征归因方法的文献中,对于2条公理,至少有一条是不满足的。这些文献包括DeepLift (Shrikumar et al., 2016; 2017), Layer-wise relevance propagation (
原创
发布博客 前天 08:29 ·
9 阅读 ·
0 点赞 ·
0 评论

wps怎么删除分隔符号 分栏

 这时我们就可以看到所插入的分节符了。如要删除先将光标定位到分隔符前面,按Delete即可删除。
原创
发布博客 2022.05.18 ·
73 阅读 ·
0 点赞 ·
0 评论

【可解释】| Guided Backprop deconv 方法理论分析

A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations反向传播的可视化技术被用来理解和可视化卷积神经网络(CNN)的学习范式,但对于引导反向传播(GBP)和反卷积网络(DeconvNet)过程,现阶段缺少相应的理论来进行解释。因此,作者从理论层面探讨了GBP和DeconvNet在神经网络中的作用。研究表明:GBP和DeconvNet在训练过程中的作用是不断的进行部分图像重建,而与
原创
发布博客 2022.05.17 ·
25 阅读 ·
0 点赞 ·
0 评论

【可解释】| Guided Backprop deconv 方法理论分析

A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations反向传播的可视化技术被用来理解和可视化卷积神经网络(CNN)的学习范式,但对于引导反向传播(GBP)和反卷积网络(DeconvNet)过程,现阶段缺少相应的理论来进行解释。因此,作者从理论层面探讨了GBP和DeconvNet在神经网络中的作用。研究表明:GBP和DeconvNet在训练过程中的作用是不断的进行部分图像重建,而与
原创
发布博客 2022.05.17 ·
25 阅读 ·
0 点赞 ·
0 评论

【可解释】|指标

2021CVPRRevisiting The Evaluation of Class Activation Mapping for Explainability:https://arxiv.org/abs/2104.10252https://github.com/aimagelab/ADCC
原创
发布博客 2022.05.17 ·
7 阅读 ·
0 点赞 ·
0 评论

【AI芯片】ONNXRuntime

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其
原创
发布博客 2022.05.13 ·
65 阅读 ·
0 点赞 ·
0 评论

解决VMware中共享文件夹hgfs的权限问题 共享文件夹不显示

在VMware中的Ubuntu共享了目录发现/mnt/hgfs 一直都是root权限,而且hgfs没有写的权限 导致很多问题无效方法chmod 不行chmod 777 -Rchown username:group /mnt/hgfsusermod -aG vboxsf usernamesudo chown username:username hgfs -Rsudo chmod 777 ./hgfs正确方法sudo umount /mnt/hgfssudo /usr/bin/vmhgfs
原创
发布博客 2022.05.12 ·
186 阅读 ·
0 点赞 ·
0 评论

解决VMware中共享文件夹hgfs的权限问题 共享文件夹不显示

在VMware中的Ubuntu共享了目录发现/mnt/hgfs 一直都是root权限,而且hgfs没有写的权限 导致很多问题无效方法chmod 不行chmod 777 -Rchown username:group /mnt/hgfsusermod -aG vboxsf usernamesudo chown username:username hgfs -Rsudo chmod 777 ./hgfs正确方法sudo umount /mnt/hgfssudo /usr/bin/vmhgfs
原创
发布博客 2022.05.12 ·
186 阅读 ·
0 点赞 ·
0 评论

【docker】|docker容器安装vi

增加一条源地址到/etc/apt/sources.list文件中。echo deb http://archive.ubuntu.com/ubuntu/trusty main universe restricted multiverse >> /etc/apt/sources.listapt-get updateapt-get install vim
原创
发布博客 2022.05.11 ·
160 阅读 ·
0 点赞 ·
0 评论

Ubuntu系统镜像下载(清华大学开源软件镜像站)(ubuntu-20.04-desktop-amd64.iso

https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/20.04/
原创
发布博客 2022.05.10 ·
72 阅读 ·
0 点赞 ·
0 评论

【docker】|指令挂载本地目录

docker version1 . 查看镜像docker images或者docker image ls2 .查看容器查看运行中的容器docker container ls或者docker ps运行镜像(创建容器)注:镜像是基础,容器是体现;有镜像才能创建容器。新建并启动容器docker run参数讲解:–detach , -d 容器后台运行,并打印容器ID–rm 如果已经有同名的容器,移除同名容器–name 给容器起个名字–publish , -p 端口映射,将宿主机的
原创
发布博客 2022.05.09 ·
26 阅读 ·
0 点赞 ·
0 评论

【docker】|安装docker 后出现 WSL 2 installation is incomplete解决办法

解决使用的wsl2版本老了,需要我们自己手动更新一下,我们根据提示去微软官网下载最新版的wsl2安装后即可正常打开。https://docs.microsoft.com/zh-cn/windows/wsl/install-manual#step-4—download-the-linux-kernel-update-package...
原创
发布博客 2022.05.09 ·
288 阅读 ·
0 点赞 ·
0 评论

docker

Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源。那么什么是容器呢?容器技术可以理解为操作系统虚拟化技术(虚拟化技术,这是虚拟机和容器技术诞生的前提,虚拟化是一种使计算环境独立于物理基础架构的软件,将各种物理资源如CPU、内存、磁盘、网络等予以抽象、转换,然后呈现出来的一个可供分割并任意组合为一个或多个虚拟计算机的配置环境),它是一种轻量级的,没有类似虚拟机的VMM层,而是通过内核创建多个虚拟的操作系统实例(内核和库)来隔离不同的进程(容器),不同的实例
原创
发布博客 2022.05.06 ·
83 阅读 ·
0 点赞 ·
0 评论

try except Exception as e使用案例

a = [1,2,3] try: a[3]except Exception as e: print('错误类型是',e.__class__.__name__) print('错误明细是',e)a = [1,2,3] try: a[3]except Exception as e: traceback.print_exc()a = [1,2,3] try: a[3]except Exception as e: traceback.
原创
发布博客 2022.05.06 ·
65 阅读 ·
0 点赞 ·
0 评论

【可解释】|Relevance-CAM LFI-CAM

(ICASSP) INTEGRATED GRAD-CAM: SENSITIVITY-AWARE VISUAL EXPLANATION OF DEEP CONVOLUTIONAL NETWORKS VIA INTEGRATED GRADIENT-BASED SCORING(WACV2021) F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling(CVPR2021) Relevance-CAM: Your M
原创
发布博客 2022.05.02 ·
83 阅读 ·
0 点赞 ·
0 评论

【可解释】|ISCAM

IS-CAM: Integrated Score-CAM foraxiomatic-based explanations
原创
发布博客 2022.05.02 ·
57 阅读 ·
0 点赞 ·
0 评论

Spyder闪退问题分析 成功解决办法

出现spyder闪退尝试1 重启 不行2 用cmd 打开spyder 不行PS C:\Users\10928> spyder --new-instancelink image0 hasn't been detected!Traceback (most recent call last): File "C:\D\anaconda\Scripts\spyder-script.py", line 10, in <module> sys.exit(main()) F
原创
发布博客 2022.04.16 ·
1093 阅读 ·
0 点赞 ·
0 评论

pytorch 指定gpu训练与多gpu并行训练示例

import torchtorch.cuda.set_device(id)CUDA_VISIBLE_DEVICES=1 python 你的程序遇到大的模型一般会采用torch.nn.DataParallel()的方式使用多GPU进行训练,但torch.nn.DataParallel()这个方式会每次调用GPU:0,如果0卡被占用就训练不起来了。在此提供两种指定GPU的方法:方法一:.cuda(‘cuda:3’)这种方法就是将有cuda()的地方全部里面指定卡,但是这样改的地方太多,要是再做变动就
原创
发布博客 2022.04.14 ·
312 阅读 ·
0 点赞 ·
1 评论

深度学习中为什么要数据预处理?并对测试集进行与训练集一样的数据预处理

拿到数据都要做预处理,包括去均值和方差归一化。构造的数据幅度保持在-1到1之间,否则会不收敛。训练集与测试集一般默认是同一分布下的,两者要么统一标准化,要么不进行标准化。我们是拿训练集中数据的某个特征代表了全部数据的这个特征,用它的均值和方差代表了全部数据的均值和方差。这就很容易理解了,测试集要使用训练集的均值和方差进行标准化,不就是在用我们假设的数据特征服从的均值和方差进行标准化吗?所以不只是深度学习,传统机器学习算法的预处理也需要这么做。深度学习做了标准化后能够对网络的训练有一些益处罢了,这也是为什
原创
发布博客 2022.04.13 ·
1034 阅读 ·
0 点赞 ·
0 评论

python print保存到txt

import ost = 5s = 'hello world!'with open('test.txt','a') as file0: print('%d' % t,'%s' % s,file=file0)
原创
发布博客 2022.04.13 ·
704 阅读 ·
0 点赞 ·
0 评论
加载更多