自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(724)
  • 资源 (15)
  • 论坛 (6)
  • 问答 (2)
  • 收藏
  • 关注

原创 Tensorflow中的数据对象Dataset.shuffle()、repeat()、batch() 等用法

Dataset数据对象Dataset可以用来表示输入管道元素集合(张量的嵌套结构)和“逻辑计划“对这些元素的转换操作。在Dataset中元素可以是向量,元组或字典等形式。另外,Dataset需要配合另外一个类Iterator进行使用,Iterator对象是一个迭代器,可以对Dataset中的元素进行迭代提取。Dataset方法2.1 .from_tensor_slicesfrom_tensor_slices 用于创建dataset,其元素是给定张量的切片的元素。函数形式:from_tensor

2021-05-02 10:23:06 27

原创 ModelCheckpoint参数说明

ModelCheckpoint参数说明keras.callbacks.ModelCheckpoint(filepath,monitor=‘val_loss’,verbose=0,save_best_only=False, save_weights_only=False, mode=‘auto’, period=1)filename:字符串,保存模型的路径monitor:需要监视的值verbose:信息展示模式,0或1(checkpoint的保存信息,类似Epoch 00001: saving mod

2021-04-27 17:22:59 31

原创 AttributeError: ‘ModelCheckpoint’ object has no attribute ‘on_train_batch_begin’

在运行的时候报错:AttributeError: ‘ModelCheckpoint’ object has no attribute ‘on_train_batch_begin’应该将from keras.callbacks import Modelcheckpoint改为从tensorflow中导入,即from tensorflow.python.keras.callbacks import ModelCheckpoint...

2021-04-26 12:03:26 24

原创 【去雾】|根据深度图生成合成雾天图像 代码 code

# -*- coding: utf-8 -*-import scipyimport matplotlib.pyplot as pltfrom random import uniformimport h5pyimport osimport numpy as npfor k in range(33,34): print(k) ##### 读取深度############ features_path='E:\\Data_Set\\hangpai\\results\\'+st

2021-04-24 19:09:44 55

原创 【darknet】|yolov3 推理

./darknet detector test cfg/coco.data cfg/yolov3.cfg model/yolov3.weights data/dog.jpg # 加载yolov3配置文件和模型参数进行检测# yolov3 log 从36层截取:0-74层一共53个conv layer其余都是res layer即shortcut操作,75-105层为yolov3的特征交互层分为三种尺度layer filters size input

2021-04-24 09:41:13 22

原创 Could not load dynamic library ‘cupti64_100.dll‘;

Could not load dynamic library ‘cupti64_100.dll’; dlerror: cupti64_100.dll not found2021-04-19 21:31:45.754560: W tensorflow/core/profiler/lib/profiler_session.cc:213] Encountered error while starting profiler: Unavailable: CUPTI error: CUPTI could not be

2021-04-19 21:47:34 36

原创 python 对txt中每行内容进行批量替换

f = open('./v al.txt')lines = f.readlines() #整行读取f.close()for line in lines: rs = line.rstrip('\n') #去除原来每行后面的换行符,但有可能是\r或\r\n newname=rs.replace(rs,'/JPEGImages/'+rs+'.jpg'+' '+'/SegmentationClassAug/'+rs+'.png') newfile=open('. val1.txt','

2021-04-19 17:59:23 29

原创 【tensorflow/keras】 model.fit_generator

fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)参数:ge

2021-04-19 17:53:52 22

原创 ValueError: You are trying to load a weight file containing 2 layers into a

loadweights 参数中加上by_name=Truemodel.load_weights('mobilenet_top.h5', by_name=True)

2021-04-19 10:18:58 17

原创 tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is p

报错tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize问题分析cudnn 原因是安装tensorflow时候下载的cudnn版本和电脑自带的cudnn不一致解决cudnn 问题找到anaconda 下载的包说明是7.6.5这时候按照配置cudnn的方法复制到

2021-04-18 10:54:50 16

原创 str‘ object has no attribute ‘decode‘解决办法

File "\tensorflow_core\python\keras\saving\hdf5_format.py", llib/python3.6/site-packages/keras/engine/saving.py", line 1004, in load_weights_from_hdf5_group original_keras_version = f.attrs['keras_version'].decode('utf8')AttributeError: 'str' object

2021-04-18 10:40:12 76

原创 python 将目录下所有图像的绝对路径存入txt

read_txt.py#!/usr/bin/python#-*-conding:utf-8-*-#获取目录下文件的绝对路径import os,syspath='F:/Train_Image/VOCdevkit/ImageSets/JPEGImages'# 绝对路径files = os.listdir(path)with open(path+'/train.txt', mode='w') as f: for i in files: if i[-1] == 'g': f.

2021-04-17 21:58:51 12

原创 多个版本cuda cuda10 cudnn 7.4 卸载重装anaconda tensorflow gpu1.14 numpy1.16配置

安装cuda10.0换一个目录安装,其他盘也可以。注意不需要选择vs编译那个,修改环境变量CUDA即可切换cudnn复制到对应位置就行anaconda 3-5.3卸载把c盘的相关文件夹手动删掉/之前版本重装发现不行,换了高版本python3.7的tensorflow-gpu1.14tensorflow-gpu1.15对应numpy 1.19/16都会报错ModuleNotFoundError: No module named 'numpy.core._multiarray_umath'

2021-04-17 08:46:13 12

原创 conda空间清理

conda clean -y -all //删除没有环境使用的所有的安装包及cache

2021-04-16 09:43:02 37

原创 Windows系统下安装多个版本cuda、cudnn,以及切换使用

方法一哪个版本不用时,就把那个环境变量中的path路径改为非实际路径,比如v9.0改为v9.0.111需要用的版本,就在环境变量中将CUDA_PATH,NVCUDASAMPLES_ROOT改成对应的路径

2021-04-16 09:24:25 75

原创 h5转为tflite

import tensorflow as tfconverter = tf.lite.TFLiteConverter.from_keras_model_file('latest.h5')tflite_model = converter.convert()open("latest.tflite", "wb").write(tflite_model)

2021-04-15 17:55:43 57

原创 cuda cudnn gpu驱动 tensorflow-gpu版本对应

CUDA与显卡驱动:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.htmlTensorFlow-GPU与CUDA cudnn Python版本关系:https://tensorflow.google.cn/install/source_windows?hl=en#gpu以下是windows的对应关系,Linux和macOS的对应关系在上面的链接里面...

2021-04-15 17:12:30 52

原创 K210卷积

https://blog.sipeed.com/p/367.html#more-367https://gitee.com/dongenerate/LicheeDan_K210_examples/tree/master/src/kpu_conv

2021-04-14 22:26:02 12

原创 获取tiny-yolov3预训练权重 生成map

首先下载yolov3_tiny.weightswget https://pjreddie.com/media/files/yolov3_tiny.weights然后在darknet中执行ubuntu: ./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15windows:darknet.exe partial cfg/yolov3-tiny.cfg yolov3-tiny.weights

2021-04-14 11:28:59 65 1

原创 由于找不到vcruntime140_1.dll,无法继续执行代码

下载vcruntime140_1.dll提取码:8ctl解压后将vcruntime140_1.dll复制到C:\Windows\System32即可

2021-04-13 08:38:09 91

原创 【机器学习】|SVM理解

refhttps://www.zhihu.com/question/21094489Support Vector Machine, 一个普通的SVM就是一条直线罢了,用来完美划分线性可分的两类。但这又不是一条普通的直线,这是无数条可以分类的直线当中最完美的,因为它恰好在两个类的中间,距离两个类的点都一样远。而所谓的Support vector就是这些离分界线最近的『点』1直观理解可以说是这些vectors(主,点点)support(谓,定义)了machine(宾,分类器)…如果是高维的点,S

2021-04-12 10:45:44 22

原创 【目标跟踪】|MOSSE原理及对应代码解释 matlab C

原理https://www.bilibili.com/video/av74302620/?spm_id_from=333.788.videocard.0https://blog.csdn.net/fzp95/article/details/78385795?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_title-4&spm=1001.2101.3001.4242code// This file ispart of the

2021-04-11 22:16:50 62 2

原创 【目标跟踪】|Meansift 算法原理及对应代码解释 matlab C

背景原理MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。无参密度估计方法:不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值 由该点邻域中的若干样本点估计 得出。常用的无参密度估计方法有:直方图法、最近邻域法和核密度估计法。核密度估计法的原理在直方图法基础上,加了一个用于平滑数据的核函数。MeanShift的基本思想及物理含义:在一定范围内的所有采样点相对于基准点的“合运动方向”, 即为meanshift向量的方向注

2021-04-10 22:53:15 45

原创 【目标跟踪】|数据集

目标跟踪UAV123数据集https://pan.baidu.com/s/1hQCIjEx5VCZ455IL-Z6y3Q 7lwkVOT数据集下载——(vot2013到vot2019)百度网盘链接:https://pan.baidu.com/s/1co6NSk3imqhLWfq3H1ek1A提取码:bs6g常见数据集https://blog.csdn.net/laizi_laizi/article/details/105447947?utm_medium=distribute.pc_relev

2021-04-10 22:13:26 15

原创 卷积操作中的矩阵乘法gemm im2col

refhttps://blog.csdn.net/just_sort/article/details/104198332?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522161797754516780274134998%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=161797754516780274134...

2021-04-09 22:14:14 14

原创 【目标检测】|论文笔记 综述类

综述一标题:Deep Domain Adaptive Object Detection: a Survey(深度域适应目标检测)作者:Wanyi Li, Peng Wang单位:中国科学院自动化研究所链接:https://arxiv.org/abs/2002.06797标题:Foreground-Background Imbalance Problem in Deep Object Detectors: A Review(深度目标检测器中前景-背景不平衡问题综述)作者: Joya Chen, T

2021-04-06 09:12:53 15

原创 【模型剪枝】|Pruning Convolutional Neural Networks for Resource Efficient Inference

https://github.com/jacobgil/pytorch-pruning剪枝之后的VGG准确率从98.7% 掉到97.5%.网络大小从 538 MB压缩到 150 MB.在i7 CPU上,对一张图的推断时间从 0.78 减少为 0.277 s,几乎是3倍加速。裁剪filter的依据是:用Taylor展开来近似pruning的优化问题。需要注意的是,裁剪某一层的filter后,下一层的weight也需要更新。...

2021-04-05 08:31:53 45

原创 【网络架构搜索NAS】|论文笔记-NetAdapt

NetAdapt: Platform-Aware Neural NetworkAdaptation for Mobile Applicationshttps://arxiv.org/pdf/1804.03230.pdfcodehttps://github.com/denru01/netadapt摘要本文提出了一种称为NetAdapt的算法,该算法在给定资源预算的情况下,自动地将预先训练好的深层神经网络应用于移动平台。虽然许多现有算法基于MAC或权重的数量来简化网络,但是优化这些间接度量可能不一定

2021-04-04 23:02:40 23

原创 【网络架构搜索NAS】|概述

一、背景机器学习从业者被戏称为“调参工”已经不是一天两天了。我们知道,机器学习算法的效果好坏不仅取决于参数,而且很大程度上取决于各种超参数。有些paper的结果很难重现原因之一就是获得最优超参值往往需要花很大的力气。超参数的自动搜索优化是一个古老的话题了。深度学习兴起前它主要针对传统机器学习算法中的模型超参数,比较经典的方法有随机搜索(Random search), 网格搜索(Grid search),贝叶斯优化(Bayesian optimization),强化学习(Reinforcement lear

2021-04-04 22:25:47 32

原创 【模型剪枝】|论文笔记 Optimal Brain Damage

1 摘要通过从网络中删除不重要的权重,可以有更好的泛化能力、需求更少的训练样本、更少的学习或分类时间。本文的基础思想是使用二阶导数将一个训练好的网络,删除一半甚至一半以上的权重,最终会和原来的网络性能一样好,甚至更好。最好的泛化能力是在训练误差和网络复杂度平衡的时候。2 介绍达到这种平衡的一种技术是最小化由两部分组成(原始的训练误差+网络复杂度的度量)的损失函数。复杂度评估方法包括VC维度,描述长度、还有一个历史悠久的方法是:自由参数中的非零参数数量,这个方法也是本文选用的方法。在很多统计推理的文

2021-04-03 16:39:08 35

原创 深度学习可解释性

https://github.com/oneTaken/awesome_deep_learning_interpretability

2021-04-01 17:22:11 19

原创 芯片整体设计制造

产业链半导体行业产业链从上游到下游大体可分为:设计软件(EDA)、设备、材料(晶圆及耗材)、IC设计、代工、封装等。IDM厂商是指集成了设计、制造、封装、销售等全流程的厂商,一般是一些科技巨头公司分工模式(Fabless-Foundry)的出现主要是由于芯片制程工艺的不断发展,工艺研发费用及产线投资升级费用大幅上升导致一般芯片厂商难以覆盖成本,而 Foundry厂商则是统一对Fabless和IDM的委外订单进行流片,形成规模化生产优势,保证盈利的同时不断投资研发新的制程工艺,是摩尔定律的主要推动者。

2021-03-29 18:02:45 35

原创 ISP IPC DVR NVR

2021-03-15 09:56:54 45

原创 四大主流芯片架构(X86、ARM、RISC-V和MIPS)

1、X86架构X86是微处理器执行的计算机语言指令集,指一个Intel通用计算机系列的标准编号缩写,也标识一套通用的计算机指令集合。1978年6月8日,Intel 发布了新款16位微处理器 8086,也同时开创了一个新时代:X86架构诞生了。X86指令集是美国Intel公司为其第一块16位CPU(i8086)专门开发的,美国IBM公司1981年推出的世界第一台PC机中的CPU–i8088(i8086简化版)使用的也是X86指令。采用CISC(Complex Instruction Set Compu.

2021-03-14 16:23:04 583 2

原创 分辨率单位及换算,LW / PH、LP / mm、L / mm、Cycles / mm、Cycles / pixel、LP / PH

LP /mm指的是镜头的分辨率计算单位,是镜头对于成像质量传递的评判标准;在模拟时代中,胶片和/或镜头的分辨率以每毫米线对(LP / mm)表示。此单位表示在传感器/胶片平面中,您可以在一毫米内找到的线对数量。一条线对是一条黑线和一条白色的线,方向相同,宽度相同。如果镜头的分辨率为100 LP / mm,则表示在胶片(或传感器)上投影1毫米内有100条黑线和100条白线。在数字时代中,数字值没有物理范围,只有其在屏幕上或打印中的表示。所以你不能用这个单位来表达数字图像的分辨率。您可以使用LP / m

2021-02-03 00:07:14 592

原创 Ra显色指数

光源对物体真实颜色的呈现程度称为光源的显色性。ra是显色指数。为了对光源的显色性进行定量的评价,引入显色指数 的概念。以标准光源(白炽灯)为准,将其显色指数定为100,其余光源的显色指数均低于100。显色指数bai里的R1到R15,分别表示du日光下的颜色。颜色名称zhi 孟塞尔标号daoR1:淡灰红色 7.5R 6/4R2:暗灰黄色 5.0Y 6/4R3:饱和zhuan黄绿色 5.0GY 6/8R4:中等黄绿色 2.5G 6/6R5:淡蓝绿色 10.0BG 6/4R6:淡蓝色 5.0P

2021-02-02 19:40:40 175

原创 [HLS] dataflow

实现原理HLS创建单个通道,以便在数据流区域中存储每个任务的结果。这些通道可以是用于标量变量的简单fifo,或者用于非标量变量(如数组)的乒乓(PIPO)缓冲区。每一个通道都包含信号来指示FIFO或乒乓缓冲区何时满或空。...

2021-02-01 20:33:58 48

原创 [HLS] array reshape

array reshape结合了ARRAY_PARTITION(将数组拆分为更小的数组)的效果和垂直类型的ARRAY_MAP(通过增加位宽度连接数组元素)的效果。这减少了所消耗的块RAM的数量,同时提供了分区的主要好处:并行访问数据。这个pragma创建了一个新的数组,它具有更少的元素,但具有更大的位宽度,允许在单个时钟周期中访问更多的数据。#pragma HLS array_reshape variable=<name> <type> factor=<int&gt.

2021-02-01 20:33:38 65

原创 [HLS] interval 分析

• Latency: Number of clock cycles required for the function to compute all output values.• Initiation interval (II): Number of clock cycles before the function can accept new inputdata.• Loop iteration latency: Number of clock cycles it takes to complet

2021-02-01 20:03:16 37

原创 【HLS】 数组接口综合 优化

0 code test// E.g. For 8 channels:// Array Order : 0 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...// Sample Order: A0 B0 C0 D0 E0 F0 G0 H0 A1 B1 C2 etc. A2 etc...// Output Order: A0 B0 C0 D0 E0 F0 G0 H0 A0+A1 B0+B1 C0+C

2021-01-30 22:55:51 146

SSD深度学习目标识别算法文件

SSD深度学习模型,可以识别人车等15类目标。具体实现过程步骤参照本人博文

2017-11-28

C++/OpenCV2.4.xx印刷数字精确识别源码

对印刷数字识别。 过程: 1对图片进行灰度化二值化. 2对图片上的数字进行切割 3.制作匹配印刷体数字模板 4.平方和最小原则对数字识别 配置环境: VS2013+,OPENCV2.4.xx都可以(opencv3不支持,可以配置多版本opencv) 注意opencv的配置:如果没有需要先下载。 随后改项目属性: 1.VC++目录 包含目录:I:\opencv2.413\build\include I:\opencv2.413\build\include\opencv I:\opencv2.413\build\include\opencv2 2.库目录:I:\opencv2.413\build\x64\vc14\lib 3.链接器-输入-附加依赖项: opencv_core2413d.lib opencv_imgproc2413d.lib opencv_highgui2413d.lib

2018-11-06

matlab bp神经网络包括数据.mat

matlab bp神经网络以及GABP神经网络,包括数据.mat,包括详细注释,便于更改

2018-05-06

weights_yolov3/v4/及-tiny.rar

多个版本的yolo预训练与测试权重文件,350M文件夹

2021-04-14

xlinxpdf-ug902-ug871.rar

HLS ug902中文资料xilinx ug871及实验文件

2021-04-02

Qt安装遇到的问题修复解决方案

vc_runtimeMinimum_x64.msi 14.0.24215 vc_runtimeMinimum_x86.msi 14.0.24215 qt-vsaddin-msvc2015-2.5.1-rev.18 离线安装和修复

2020-08-22

李宏毅GAN对抗生成网络2018最新ppt包括作业指导ppt及相关论文

李宏毅GAN对抗生成网络2018最新ppt及相关论文,包括作业指导ppt 视频地址https://www.bilibili.com/video/av24011528/?p=1 博客地址:https://blog.csdn.net/qq_35608277/article/details/83867123

2018-11-08

labelme2COCO格式转换,包含了面积计算

使用labelme标注后,针对maskrcnn等需要coco格式的模型训练测试评估使用. labelme2COCO格式转换,包含了面积计算,类名最好按照我的car_car_1,...car_car_2样式,可以直接用

2019-04-09

win和linux操作系统文件互传 WinSCP-5.17.6-Setup

win和linux操作系统文件互传 WinSCP-5.17.6-Setup / SCP基于SSH协议,可以直接在Windows自带的CMD或者PowerShell中操作,更好的方法是直接使用WinSCP软件。

2020-10-09

yolo 中文标签 .py 和所需ukai.ttc字体

yolo 中文标签 .py 和所需的ukai.ttc字体。通过.py 在命令行执行。

2018-04-15

matlab延期序列号license.lic

matlab延期序列号license.lic,用于即将过期的matlab软件继续使用。

2017-10-24

model_dcnf-fcsp_Make3D.mat

深度估计对应的代码权重,git上没有 https://github.com/raingo/dcnf-fcsp

2019-01-15

yolo2模型及标定

本人亲测可以训练自己的数据集,效果速度较好,不懂得可以咨询

2017-12-21

《数学建模算法与应用习题答案》课后习题源码pdf

既包括了《数学建模算法与应用》的答案pdf,适用第一版和第二版,题目大多数都是一样的。具体包含《数学建模算法与应用》的习题和答案,并增加了附加题目,都有对应数据txt文件和.m代码。pdf有目录,方便看。

2018-11-10

xiangmu .pdf

hello fpga项目详解pdf 包含多个项目,ov7225摄像头 hdmi接口,图像处理 均值滤波 边缘检测, 高速AD LCD 音频

2020-05-04

MODELSIM10.5 中文乱码

发表于 2020-02-07 最后回复 2020-02-15

在Spyder下使用GPU训练,C盘空间明显减小几个G.有没有遇到同样问题的??

发表于 2018-11-08 最后回复 2020-02-14

rrr2的留言板

发表于 2020-01-02 最后回复 2020-01-02

vs2015 fatal error LNK1112: 模块计算机类型“X86”与目标计算机类型“x64”冲突

发表于 2019-05-05 最后回复 2019-05-09

vs2015重新安装失败

发表于 2019-04-28 最后回复 2019-05-07

请客服帮忙删掉资源

发表于 2017-11-19 最后回复 2019-03-26

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除