2024年用python爬虫爬取2024年中国大学排行(1)

for item in soup.find_all(‘tr’): # 查找符合要求的字符串形成列表

data = [] # 保存一个学校的所有信息

item = str(item)

#排名

paiming1 = re.findall(paiming, item) # re正则表达式查找指定字符串 0表示只要第一个 前面是标准后面是找的范围

if(not paiming1):

pass

else:

print(paiming1[0])

data.append(paiming1)

if(paiming1 in data):

#学校名字

xuexiao1 = re.findall(xuexiao, item)[0]

data.append(xuexiao1)

#得分

defen1 = re.findall(defen, item)[0]

data.append(defen1)

#星级

xingji1 = re.findall(xingji, item)[0]

data.append(xingji1)

#层次

cengci1 = re.findall(cengci, item)[0]

data.append(cengci1)

datalist.append(data) # 把处理好的一个学校信息放入datalist中

return datalist

得到指定一个url网页信息内容

def askURL(url):

我的初始访问user agent

head = { # 模拟浏览器头部信息,向豆瓣服务器发送消息 伪装用的

“User-Agent”: “Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.116 Safari/537.36”

}

用户代理表示告诉豆瓣服务器我们是什么类型的机器–浏览器 本质是告诉浏览器我们可以接受什么水平的文件内容

request = urllib.request.Request(url, headers=head) # 携带头部信息访问url

用request对象访问

html = “”

try:

response = urllib.request.urlopen(request) # 用urlopen传递封装好的request对象

html = response.read().decode(“utf-8”) # read 读取 可以解码 防治乱码

print(html)

except urllib.error.URLError as e:

if hasattr(e, “code”):

print(e.code) # 打印错误代码

if hasattr(e, “reason”):

print(e.reason) # 打印错误原因

return html

3保存数据

def saveData(datalist, savepath):

book = xlwt.Workbook(encoding=“utf-8”, style_compression=0) # 创建workbook对象 样式压缩效果

sheet = book.add_sheet(‘中国大学排名’, cell_overwrite_ok=True) # 创建工作表 一个表单 cell覆盖

for i in range(0, 640):

print(“第%d条” % (i + 1))

data = datalist[i]

print(data)

for j in range(0, 5): # 每一行数据保存进去

sheet.write(i , j, data[j]) # 数据

book.save(savepath) # 保存数据表

#主函数

if name == “main”: # 当程序执行时

#调用函数 程序执行入口

main()

print(“爬取完毕!”)

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

### 关于国科大深度学习往的课程资料 针对国科大深度学习往的课程资料查询,可以从以下几个方面入手: #### 1. **官方资源** 国科大的官方网站通常会提供部分公开的教学大纲和参考资料。访问国科大计算机科学与技术学院或人工智能学院的相关页面,可能会找到一些关于深度学习课程的信息[^1]。如果具体课程主页存在,通常会有讲义、作业以及推荐教材等内容。 #### 2. **教师个人主页** 许多教授会在其个人主页上发布教学材料。通过检索国科大相关研究领域(如深度学习)的知名教授名单,并查看他们的学术主页,可能发现过往课程的PPT、视频录像或其他补充资料[^3]。 #### 3. **在线平台** - 数据鲸(DataWhale)社区是一个非常活跃的学习交流平台,在这里可以找到大量由学生整理并分享的深度学习笔记及项目实践案例[^1]。 - B站也是获取免费优质教育资源的好地方,像吴恩达、李宏毅这样的国际顶尖学者开设的公开课被广泛传播,虽然未必完全匹配国科大实际授课内容,但对于理解核心概念仍然很有帮助[^1]。 #### 4. **书籍与论文** 除了直接寻找特定学校的内部文档外,《百面机器学习》与《百面深度学习》两本书籍能够很好地覆盖常见知识点及其应用场景分析,适合用来作为备考指南之一[^1]。同时利用Google Scholar搜索带有“UCAS”关键词的文章也可能揭示某些研究成果背后的技术细节。 ```python import requests from bs4 import BeautifulSoup def fetch_course_materials(university="ucas", subject="deep learning"): url = f"https://www.{university}.edu.cn" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') links = [] for link in soup.find_all('a'): href = link.get('href') if subject.lower() in str(href).lower(): links.append(f"{url}{href}") return links[:5] print(fetch_course_materials()) ``` 此脚本尝试爬取指定高校网站上的相关内容链接供进一步探索使用,请注意遵守目标站点robots协议规定。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值