2024年Python最新Python数组变形(学习笔记),2024年最新jvm面试题总结及答案

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

注意,两个list合并的时候需要用到 [ ] ,否则出错。

在这里插入图片描述

在这里插入图片描述

axis参数指定新轴在结果尺寸中的索引。例如,如果axis=0,它将是第一个维度,如果axis=-1,它将是最后一个维度。

默认情况下axis=0

arr1=np.arange(1,25.0).reshape(4,6)

arr2=np.arange(26,50.0).reshape(4,6)

np.concatenate([arr1,arr2],axis=1)

np.concatenate([arr1,arr2],axis=0)

在这里插入图片描述

如上图所示,axis=1是将不同的列串联起来,axis=0则类似于append,是合并。

arr1arr2进行对调:

在这里插入图片描述

(2)vstack


函数原型:vstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它是垂直(按照行顺序)的把数组给堆叠起来。

vstack 和concatenate( ),axis=0等价

在这里插入图片描述

(3)dstack


dstack是deep stack,即在深度方向进行合并。

dstack可以将一维数组变成三维数组。

import numpy as np

vstack

np.vstack([arr1,arr2])

#结果:

array([[ 1., 2., 3., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12.],

[13., 14., 15., 16., 17., 18.],

[19., 20., 21., 22., 23., 24.],

[26., 27., 28., 29., 30., 31.],

[32., 33., 34., 35., 36., 37.],

[38., 39., 40., 41., 42., 43.],

[44., 45., 46., 47., 48., 49.]])

dstack

np.dstack([arr1,arr2])

结果:

array([[[ 1., 26.],

[ 2., 27.],

[ 3., 28.],

[ 4., 29.],

[ 5., 30.],

[ 6., 31.]],

[[ 7., 32.],

[ 8., 33.],

[ 9., 34.],

[10., 35.],

[11., 36.],

[12., 37.]],

[[13., 38.],

[14., 39.],

[15., 40.],

[16., 41.],

[17., 42.],

[18., 43.]],

[[19., 44.],

[20., 45.],

[21., 46.],

[22., 47.],

[23., 48.],

[24., 49.]]])

(4)hstack


函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组,水平(按列顺序)把数组给堆叠起来,vstack()函数正好和它相反。

在这里插入图片描述

(5)r,c模式


np.r_[arr1,arr2] ,实际上是vstack 与 axis=0 做了一个合并(concatenate)。

np.c_[arr1,arr2] , hstack 与 axis=1 做了一个合并(concatenate)。

在这里插入图片描述

print(np.r_[-2:2:1,[0]*3,5,6])

上面那段代码由三部分组成,-2:2:1表示从-2~2的数字,间隔为1,并且2没有,然后是3个0,接下来是5和6

在这里插入图片描述

print((np.r_[‘r’,-2:2:1,[0]*3,5,6])) #二维数组,以行的方式呈现

print((np.r_[‘c’,-2:2:1,[0]*3,5,6])) #二维数组,以列的方式呈现

在这里插入图片描述

默认是为r,表示沿着行的方向创建,c则表示以列的方式创建。

注:shape表示矩阵的维度大小。

在这里插入图片描述

也可以用'a,b,c'来进行表示,a代表轴,沿着轴a来进行合并,代表合并后数组维度至少是bc是代表在第c维度上做维度提升

print(np.r_[‘0,2,0’,[1,2,3],[4,5,6]],‘\n’)

print(np.r_[‘0,2,1’,[1,2,3],[4,5,6]],‘\n’)

print(np.r_[‘1,2,0’,[1,2,3],[4,5,6]],‘\n’)

print(np.r_[‘1,2,1’,[1,2,3],[4,5,6]])

在这里插入图片描述

b:合并后数组的维度

a=0,沿着轴0合并。(3,)–>(1,3)

a=1,沿着轴1合并。(3,1)–>(3,2)

c=0,在轴0上上升一维,(3,)–>(3,1)

c=1,在轴1上上升一维,(3,)–>(1,3)

在这里插入图片描述

5.split

=====================================================================

(1)split


split 具体有 split() , hsplit() , vsplit()

arr1=np.arange(1,13.0).reshape(2,6)

arr2=np.arange(14,26.0).reshape(2,6)

arr=np.concatenate([arr1,arr2])

arr3=np.split(arr,2) # 默认情况下是 axis=0

在这里插入图片描述

由上图可知,split分割成为二维数组

arr4=np.split(arr,3,axis=1)

print(arr4[0].shape)

arr4

在这里插入图片描述

arr5=np.split(arr,4,axis=0)

arr6=np.split(arr,[1,2,3],axis=0)

上述代码块的两行表示是相同的,第二行相当于使用数组的切片方式进行处理。

在这里插入图片描述

(2)vsplit和hsplit


  1. vsplit 垂直(按行)将阵列拆分为多个子阵列。

  2. hsplit 水平(按列)将阵列拆分为多个子阵列。

这部分希望大家看下图体会~

arrv=np.vsplit(arr,[1,2,3,4])

arrh=np.hsplit(arr,[1,2,3,4,5])

在这里插入图片描述

在这里插入图片描述

6.repeat

======================================================================

repeat(): 复制数组中的每个指定元素。

一维数组:用整数型和列表型参考来控制元素被复制的个数

多维数组:用整数型和列表型来控制元素被复制的个数

import numpy as np

arr=np.arange(3)

print(arr.shape)

(1)标量参数


print(arr.repeat(3)) # 每个元素复制三次

在这里插入图片描述

(2)列表参数


print(arr)

print(arr.repeat([1,2,3]))

第一个没有复制,第二个复制了两个,,依次类推

在这里插入图片描述

当列表的元素少于数组元素,或者多余数组元素,都会报错,就如下图所示。

在这里插入图片描述

上面是一维数组的,接下来再看看二维数组中利用标量参数和轴参数:

在这里插入图片描述

print(arr.repeat(2)) # 此时二维数组变成一维的了

print(arr.repeat(2,1))

print(arr.repeat(2,axis=0)) # 在行上面进行复制

在这里插入图片描述

再来看看二维数组中的列表参数和轴参数:

在这里插入图片描述

7.tile

====================================================================

关于repeat和title,二者的本质都是复制,而repeat是在元素层面进行赋值,title是在数组层面进行赋值。

(1)标量参数


print(np.tile(arr,2))

print(np.repeat(arr,2))

在这里插入图片描述

(2)元组参数


元组参数即括号里面用相关参数进行分割。

print(np.tile(arr,(2,3)))

在这里插入图片描述

print(np.tile(arr,(2,3,4)))

在轴0上面复制两遍,复制3遍,复制4遍。

在这里插入图片描述

8.sort

====================================================================

排序分为:

  1. 直接排序

  2. 间接排序

直接排序sort() :在原来的数组上进行排序操作,而不重新创建一个数组

(1)一维数组排序方法


arr=np.array([9,1,5,7,2,3,8,6]) # 先创建一个无序数组

arr

print(‘排序之前的数组:’,arr)

arr.sort()

print(‘排序之后的数组:’,arr)

在这里插入图片描述

arr[::-1] # 使用倒序的方法显示

在这里插入图片描述

(2)多维数组排序方法


先使用random随机生成一个二维数组:(每次)

import numpy as np

np.random.seed(1000)

arr=np.random.randint(40,size=(3,4))

arr

以上的方法在每次重新刷新了之后会变化数组的数字。

在这里插入图片描述

如果对二维数组直接使用arr.sort(),则会直接对行进行排序。

在这里插入图片描述

对列进行排序:

print(‘排序之前的数组:’)

print(arr)

arr[:,0].sort()

print(‘排序之后的数组:’)

print(arr)

在这里插入图片描述

np.sort(arr[:,2]) # 选择第三列进行排序

在这里插入图片描述

arr.sort(axis=1) # 横着排序,原来数组改变

np.sort(arr,axis=1) # 横着排序,但原来的数组不会改变

arr.sort(axis=0) # 竖着排序,原来数组改变

np.sort(arr,axis=0) # 竖着排序,但原来的数组不会改变

在这里插入图片描述

在这里插入图片描述

(3)argsort函数


接下来看看间接排序:

间接排序:利用特定的参数进行排序,按需排序,需要使用argsort( )函数

argsort函数:返回的是数组值从小到大的索引值。

score=np.array([100,65,76,89,58])

idx=score.argsort()

idx

在这里插入图片描述

因此如果打印数组的时候带上下标就相当于排序了:

print(score[idx]) # 利用索引标签来打印

文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值