一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
注意,两个list合并的时候需要用到 [ ]
,否则出错。
axis
参数指定新轴在结果尺寸中的索引。例如,如果axis=0,它将是第一个维度,如果axis=-1,它将是最后一个维度。
默认情况下axis=0
arr1=np.arange(1,25.0).reshape(4,6)
arr2=np.arange(26,50.0).reshape(4,6)
np.concatenate([arr1,arr2],axis=1)
np.concatenate([arr1,arr2],axis=0)
如上图所示,axis=1
是将不同的列串联起来,axis=0
则类似于append,是合并。
将arr1与arr2进行对调:
函数原型:vstack(tup)
,参数tup
可以是元组,列表,或者numpy
数组,返回结果为numpy的数组。它是垂直(按照行顺序)的把数组给堆叠起来。
vstack 和concatenate( ),axis=0等价
dstack
是deep stack,即在深度方向进行合并。
dstack可以将一维数组变成三维数组。
import numpy as np
vstack
np.vstack([arr1,arr2])
#结果:
array([[ 1., 2., 3., 4., 5., 6.],
[ 7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[26., 27., 28., 29., 30., 31.],
[32., 33., 34., 35., 36., 37.],
[38., 39., 40., 41., 42., 43.],
[44., 45., 46., 47., 48., 49.]])
dstack
np.dstack([arr1,arr2])
结果:
array([[[ 1., 26.],
[ 2., 27.],
[ 3., 28.],
[ 4., 29.],
[ 5., 30.],
[ 6., 31.]],
[[ 7., 32.],
[ 8., 33.],
[ 9., 34.],
[10., 35.],
[11., 36.],
[12., 37.]],
[[13., 38.],
[14., 39.],
[15., 40.],
[16., 41.],
[17., 42.],
[18., 43.]],
[[19., 44.],
[20., 45.],
[21., 46.],
[22., 47.],
[23., 48.],
[24., 49.]]])
函数原型:hstack(tup)
,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组,水平(按列顺序)把数组给堆叠起来,vstack()函数正好和它相反。
np.r_[arr1,arr2] ,实际上是vstack 与 axis=0 做了一个合并(concatenate)。
np.c_[arr1,arr2] , hstack 与 axis=1 做了一个合并(concatenate)。
print(np.r_[-2:2:1,[0]*3,5,6])
上面那段代码由三部分组成,-2:2:1表示从-2~2的数字,间隔为1,并且2没有,然后是3个0,接下来是5和6
print((np.r_[‘r’,-2:2:1,[0]*3,5,6])) #二维数组,以行的方式呈现
print((np.r_[‘c’,-2:2:1,[0]*3,5,6])) #二维数组,以列的方式呈现
默认是为r,表示沿着行的方向创建,c则表示以列的方式创建。
注:shape
表示矩阵的维度大小。
也可以用'a,b,c'
来进行表示,a
代表轴,沿着轴a来进行合并,代表合并后数组维度至少是b
,c
是代表在第c维度上做维度提升
print(np.r_[‘0,2,0’,[1,2,3],[4,5,6]],‘\n’)
print(np.r_[‘0,2,1’,[1,2,3],[4,5,6]],‘\n’)
print(np.r_[‘1,2,0’,[1,2,3],[4,5,6]],‘\n’)
print(np.r_[‘1,2,1’,[1,2,3],[4,5,6]])
b:合并后数组的维度
a=0,沿着轴0合并。(3,)–>(1,3)
a=1,沿着轴1合并。(3,1)–>(3,2)
c=0,在轴0上上升一维,(3,)–>(3,1)
c=1,在轴1上上升一维,(3,)–>(1,3)
=====================================================================
split 具体有 split() , hsplit() , vsplit()
arr1=np.arange(1,13.0).reshape(2,6)
arr2=np.arange(14,26.0).reshape(2,6)
arr=np.concatenate([arr1,arr2])
arr3=np.split(arr,2) # 默认情况下是 axis=0
由上图可知,split分割成为二维数组
arr4=np.split(arr,3,axis=1)
print(arr4[0].shape)
arr4
arr5=np.split(arr,4,axis=0)
arr6=np.split(arr,[1,2,3],axis=0)
上述代码块的两行表示是相同的,第二行相当于使用数组的切片方式进行处理。
-
vsplit
垂直(按行)将阵列拆分为多个子阵列。 -
hsplit
水平(按列)将阵列拆分为多个子阵列。
这部分希望大家看下图体会~
arrv=np.vsplit(arr,[1,2,3,4])
arrh=np.hsplit(arr,[1,2,3,4,5])
======================================================================
repeat()
: 复制数组中的每个指定元素。
一维数组:用整数型和列表型参考来控制元素被复制的个数
多维数组:用整数型和列表型来控制元素被复制的个数
import numpy as np
arr=np.arange(3)
print(arr.shape)
print(arr.repeat(3)) # 每个元素复制三次
print(arr)
print(arr.repeat([1,2,3]))
第一个没有复制,第二个复制了两个,,依次类推
当列表的元素少于数组元素,或者多余数组元素,都会报错,就如下图所示。
上面是一维数组的,接下来再看看二维数组中利用标量参数和轴参数:
print(arr.repeat(2)) # 此时二维数组变成一维的了
print(arr.repeat(2,1))
print(arr.repeat(2,axis=0)) # 在行上面进行复制
再来看看二维数组中的列表参数和轴参数:
====================================================================
关于repeat和title,二者的本质都是复制,而repeat是在元素层面进行赋值,title是在数组层面进行赋值。
print(np.tile(arr,2))
print(np.repeat(arr,2))
元组参数即括号里面用相关参数进行分割。
print(np.tile(arr,(2,3)))
print(np.tile(arr,(2,3,4)))
在轴0上面复制两遍,行复制3遍,列复制4遍。
====================================================================
排序分为:
-
直接排序
-
间接排序
直接排序sort()
:在原来的数组上进行排序操作,而不重新创建一个数组
arr=np.array([9,1,5,7,2,3,8,6]) # 先创建一个无序数组
arr
print(‘排序之前的数组:’,arr)
arr.sort()
print(‘排序之后的数组:’,arr)
arr[::-1] # 使用倒序的方法显示
先使用random
随机生成一个二维数组:(每次)
import numpy as np
np.random.seed(1000)
arr=np.random.randint(40,size=(3,4))
arr
以上的方法在每次重新刷新了之后会变化数组的数字。
如果对二维数组直接使用arr.sort()
,则会直接对行进行排序。
对列进行排序:
print(‘排序之前的数组:’)
print(arr)
arr[:,0].sort()
print(‘排序之后的数组:’)
print(arr)
np.sort(arr[:,2]) # 选择第三列进行排序
arr.sort(axis=1) # 横着排序,原来数组改变
np.sort(arr,axis=1) # 横着排序,但原来的数组不会改变
arr.sort(axis=0) # 竖着排序,原来数组改变
np.sort(arr,axis=0) # 竖着排序,但原来的数组不会改变
接下来看看间接排序:
间接排序:利用特定的参数进行排序,按需排序,需要使用argsort( )
函数
argsort
函数:返回的是数组值从小到大的索引值。
score=np.array([100,65,76,89,58])
idx=score.argsort()
idx
因此如果打印数组的时候带上下标就相当于排序了:
print(score[idx]) # 利用索引标签来打印
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!