2024年全网首发!超详细的SparseR-CNN实战,面试官误区

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

self.save_json_path = save_json_path

self.images = []

self.categories = []

self.annotations = []

self.data_coco = {}

self.label = []

self.annID = 1

self.height = 0

self.width = 0

self.require_mask = REQUIRE_MASK

self.save_json()

def data_transfer(self):

for num, json_file in enumerate(self.labelme_json):

if not json_file == self.save_json_path:

with open(json_file, ‘r’) as fp:

data = json.load(fp)

self.images.append(self.image(data, num))

for shapes in data[‘shapes’]:

print("label is ")

print(shapes[‘label’])

label = shapes[‘label’]

if label[1] not in self.label:

if label not in self.label:

print("find new category: ")

self.categories.append(self.categorie(label))

print(self.categories)

self.label.append(label[1])

self.label.append(label)

points = shapes[‘points’]

self.annotations.append(self.annotation(points, label, num))

self.annID += 1

def image(self, data, num):

image = {}

img = utils.img_b64_to_arr(data[‘imageData’])

height, width = img.shape[:2]

img = None

image[‘height’] = height

image[‘width’] = width

image[‘id’] = num + 1

image[‘file_name’] = data[‘imagePath’].split(‘/’)[-1]

self.height = height

self.width = width

return image

def categorie(self, label):

categorie = {}

categorie[‘supercategory’] = label

categorie[‘supercategory’] = label

categorie[‘id’] = labels[label] # 0 默认为背景

categorie[‘name’] = label

return categorie

def annotation(self, points, label, num):

annotation = {}

print(points)

x1 = points[0][0]

y1 = points[0][1]

x2 = points[1][0]

y2 = points[1][1]

contour = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]]) # points = [[x1, y1], [x2, y2]] for rectangle

contour = contour.astype(int)

area = cv2.contourArea(contour)

print("contour is ", contour, " area = ", area)

annotation[‘segmentation’] = [list(np.asarray([[x1, y1], [x2, y1], [x2, y2], [x1, y2]]).flatten())]

[list(np.asarray(contour).flatten())]

annotation[‘iscrowd’] = 0

annotation[‘area’] = area

annotation[‘image_id’] = num + 1

if self.require_mask:

annotation[‘bbox’] = list(map(float, self.getbbox(points)))

else:

x1 = points[0][0]

y1 = points[0][1]

width = points[1][0] - x1

height = points[1][1] - y1

annotation[‘bbox’] = list(np.asarray([x1, y1, width, height]).flatten())

annotation[‘category_id’] = self.getcatid(label)

annotation[‘id’] = self.annID

return annotation

def getcatid(self, label):

for categorie in self.categories:

if label[1]==categorie[‘name’]:

if label == categorie[‘name’]:

return categorie[‘id’]

return -1

def getbbox(self, points):

polygons = points

mask = self.polygons_to_mask([self.height, self.width], polygons)

return self.mask2box(mask)

def mask2box(self, mask):

np.where(mask==1)

index = np.argwhere(mask == 1)

rows = index[:, 0]

clos = index[:, 1]

left_top_r = np.min(rows) # y

left_top_c = np.min(clos) # x

right_bottom_r = np.max(rows)

right_bottom_c = np.max(clos)

return [left_top_c, left_top_r, right_bottom_c - left_top_c, right_bottom_r - left_top_r]

def polygons_to_mask(self, img_shape, polygons):

mask = np.zeros(img_shape, dtype=np.uint8)

mask = PIL.Image.fromarray(mask)

xy = list(map(tuple, polygons))

PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)

mask = np.array(mask, dtype=bool)

return mask

def data2coco(self):

data_coco = {}

data_coco[‘images’] = self.images

data_coco[‘categories’] = self.categories

data_coco[‘annotations’] = self.annotations

return data_coco

def save_json(self):

print(“in save_json”)

self.data_transfer()

self.data_coco = self.data2coco()

print(self.save_json_path)

json.dump(self.data_coco, open(self.save_json_path, ‘w’), indent=4)

labelme_json = glob.glob(‘LabelmeData/*.json’)

from sklearn.model_selection import train_test_split

trainval_files, test_files = train_test_split(labelme_json, test_size=0.2, random_state=55)

import os

if not os.path.exists(“projects/SparseRCNN/datasets/coco/annotations”):

os.makedirs(“projects/SparseRCNN/datasets/coco/annotations/”)

if not os.path.exists(“projects/SparseRCNN/datasets/coco/train2017”):

os.makedirs(“projects/SparseRCNN/datasets/coco/train2017”)

if not os.path.exists(“projects/SparseRCNN/datasets/coco/val2017”):

os.makedirs(“projects/SparseRCNN/datasets/coco/val2017”)

labelme2coco(trainval_files, ‘projects/SparseRCNN/datasets/coco/annotations/instances_train2017.json’)

labelme2coco(test_files, ‘projects/SparseRCNN/datasets/coco/annotations/instances_val2017.json’)

import shutil

for file in trainval_files:

shutil.copy(os.path.splitext(file)[0] + “.jpg”, “projects/SparseRCNN/datasets/coco/train2017/”)

for file in test_files:

shutil.copy(os.path.splitext(file)[0] + “.jpg”, “projects/SparseRCNN/datasets/coco/val2017/”)

6、配置训练环境

===================================================================

6.1 更改预训练模型的size


在projects/SparseRCNN目录,新建change_model_size.py文件

import torch

import numpy as np

import pickle

num_class = 2

pretrained_weights = torch.load(‘r50_100pro_3x_model.pth’)

pretrained_weights[“head.head_series.0.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.0.class_logits.bias”].resize_(num_class)

pretrained_weights[“head.head_series.1.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.1.class_logits.bias”].resize_(num_class)

pretrained_weights[“head.head_series.2.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.2.class_logits.bias”].resize_(num_class)

pretrained_weights[“head.head_series.3.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.3.class_logits.bias”].resize_(num_class)

pretrained_weights[“head.head_series.4.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.4.class_logits.bias”].resize_(num_class)

pretrained_weights[“head.head_series.5.class_logits.weight”].resize_(num_class,256)

pretrained_weights[“head.head_series.5.class_logits.bias”].resize_(num_class)

torch.save(pretrained_weights, “model_%d.pth”%num_class)

这个文件的目的是修改模型输出的size,numclass按照本次打算训练的数据集的类别设置。

6.2 修改config参数


路径:“detectron2/engine/defaults.py”

–config-file:模型的配置文件,SparseRCNN的模型配置文件放在“projects/SparseRCNN/configs”下面。名字和预训练模型对应。

parser.add_argument(“–config-file”, default=“./configs/sparsercnn.res50.100pro.3x.yaml”, metavar=“FILE”, help=“path to config file”)

resume 是否再次,训练,如果设置为true,则接着上次训练的结果训练。所以第一次训练不用设置。

parser.add_argument(

“–resume”,

action=“store_true”,

help="Whether to attempt to resume from the checkpoint directory. "

“See documentation of DefaultTrainer.resume_or_load() for what it means.”,

)

–num-gpus,gpu的个数,如果只有一个设置为1,如果有多个,可以自己设置想用的个数。

parser.add_argument(“–num-gpus”, type=int, default=1, help=“number of gpus per machine”)

opts指的是yaml文件的参数。

上面的参数可以设置,也可以不设置,设置之后可以直接运行不用再考虑设置参数,如果不设置每次训练的时候配置一次参数。

修改类别,文件路径“projects/SparseRCNN/config.py”,

cfg.MODEL.SparseRCNN.NUM_CLASSES = 2

image-20211008165004704

修改yaml文件参数

sparsercnn.res50.100pro.3x.yaml中修改预训练模型的路径。

WEIGHTS: “model_2.pth”

BASE_LR:设置学习率。

STEPS:设置训练多少步之后调整学习率。

MAX_ITER:最大迭代次数。

CHECKPOINT_PERIOD:设置迭代多少次保存一次模型

IMS_PER_BATCH:batchsize的大小,根据显存大小设置。

NUM_CLASSES:数据集中物体类别的种类。

NUM_PROPOSALS:提议框的个数。

BASE_LR: 0.00025 #在Base-SparseRCNN.yaml中

IMS_PER_BATCH: 2#在Base-SparseRCNN.yaml中

NUM_CLASSES:2

STEPS: (21000, 25000)

MAX_ITER: 54000

CHECKPOINT_PERIOD: 5000

6.3 修改train_net.py


主要修改该setup函数,增加数据集注册。

NUM_CLASSES=2

def setup(args):

“”"

Create configs and perform basic setups.

“”"

register_coco_instances(“train”, {}, “datasets/coco/annotations/instances_train2017.json”,

“datasets/coco/train2017”)

register_coco_instances(“test”, {}, “datasets/coco/annotations/instances_val2017.json”,

“datasets/coco/val2017”)

cfg = get_cfg()

add_sparsercnn_config(cfg)

cfg.merge_from_file(args.config_file)

cfg.merge_from_list(args.opts)

cfg.DATASETS.TRAIN = (“train”,)

cfg.DATASETS.TEST = (“test”,)

cfg.MODEL.SparseRCNN.NUM_CLASSES = NUM_CLASSES

cfg.MODEL.ROI_HEADS.NUM_CLASSES=NUM_CLASSES

cfg.freeze()

default_setup(cfg, args)

return cfg

还要修改detectron2/engine/launch.py,在launch函数下面增加一句

dist.init_process_group(‘gloo’, init_method=‘file://tmp/somefile’, rank=0, world_size=1)

如下图:

image-20211008170255700

这句话的作用是初始化分布式训练,因为我们没有使用分布式,所以没有初始化,但是不初始化就会报错,所以加上这句。

7、训练

===============================================================

两种启动方式:

第一种,命令行:进入“projects/SparseRCNN/”目录下,执行:

python train_net.py

第二种,直接在pycharm 直接运行train_net.py.

训练结果:

image-20211008170647607

从训练结果上看,效果确实不错,和CenterNet2的结果相差不大,不过模型很大,大约有1.2G,比CenterNet2的模型大了一倍多。

image-20211008170429076

8、测试

===============================================================

修改demo/demo.py

8.1 修改setup_cfg函数


image-20211008170927188

在红框的位置增加代码,详细如下面的代码。

NUM_CLASSES=2

def setup_cfg(args):

load config from file and command-line arguments

cfg = get_cfg()

from projects.SparseRCNN.sparsercnn import add_sparsercnn_config

add_sparsercnn_config(cfg)

cfg.MODEL.SparseRCNN.NUM_CLASSES = NUM_CLASSES

cfg.MODEL.ROI_HEADS.NUM_CLASSES = NUM_CLASSES

cfg.merge_from_file(args.config_file)

cfg.merge_from_list(args.opts)

Set score_threshold for builtin models

cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold

cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold

cfg.freeze()

return cfg

8.2 修改显示类别


在demo/predictor.py

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值